Metamath Proof Explorer


Theorem elpwdifcl

Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Hypothesis elpwincl.1 φA𝒫C
Assertion elpwdifcl φAB𝒫C

Proof

Step Hyp Ref Expression
1 elpwincl.1 φA𝒫C
2 1 elpwid φAC
3 2 ssdifssd φABC
4 difexg A𝒫CABV
5 elpwg ABVAB𝒫CABC
6 1 4 5 3syl φAB𝒫CABC
7 3 6 mpbird φAB𝒫C