Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
|- ( ph -> O e. V ) |
2 |
|
carsgval.2 |
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) ) |
3 |
|
difelcarsg.1 |
|- ( ph -> A e. ( toCaraSiga ` M ) ) |
4 |
|
difssd |
|- ( ph -> ( O \ A ) C_ O ) |
5 |
|
indif2 |
|- ( e i^i ( O \ A ) ) = ( ( e i^i O ) \ A ) |
6 |
|
elpwi |
|- ( e e. ~P O -> e C_ O ) |
7 |
6
|
adantl |
|- ( ( ph /\ e e. ~P O ) -> e C_ O ) |
8 |
|
df-ss |
|- ( e C_ O <-> ( e i^i O ) = e ) |
9 |
7 8
|
sylib |
|- ( ( ph /\ e e. ~P O ) -> ( e i^i O ) = e ) |
10 |
9
|
difeq1d |
|- ( ( ph /\ e e. ~P O ) -> ( ( e i^i O ) \ A ) = ( e \ A ) ) |
11 |
5 10
|
syl5eq |
|- ( ( ph /\ e e. ~P O ) -> ( e i^i ( O \ A ) ) = ( e \ A ) ) |
12 |
11
|
fveq2d |
|- ( ( ph /\ e e. ~P O ) -> ( M ` ( e i^i ( O \ A ) ) ) = ( M ` ( e \ A ) ) ) |
13 |
|
difdif2 |
|- ( e \ ( O \ A ) ) = ( ( e \ O ) u. ( e i^i A ) ) |
14 |
|
ssdif0 |
|- ( e C_ O <-> ( e \ O ) = (/) ) |
15 |
7 14
|
sylib |
|- ( ( ph /\ e e. ~P O ) -> ( e \ O ) = (/) ) |
16 |
15
|
uneq1d |
|- ( ( ph /\ e e. ~P O ) -> ( ( e \ O ) u. ( e i^i A ) ) = ( (/) u. ( e i^i A ) ) ) |
17 |
|
uncom |
|- ( ( e i^i A ) u. (/) ) = ( (/) u. ( e i^i A ) ) |
18 |
|
un0 |
|- ( ( e i^i A ) u. (/) ) = ( e i^i A ) |
19 |
17 18
|
eqtr3i |
|- ( (/) u. ( e i^i A ) ) = ( e i^i A ) |
20 |
16 19
|
eqtrdi |
|- ( ( ph /\ e e. ~P O ) -> ( ( e \ O ) u. ( e i^i A ) ) = ( e i^i A ) ) |
21 |
13 20
|
syl5eq |
|- ( ( ph /\ e e. ~P O ) -> ( e \ ( O \ A ) ) = ( e i^i A ) ) |
22 |
21
|
fveq2d |
|- ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ ( O \ A ) ) ) = ( M ` ( e i^i A ) ) ) |
23 |
12 22
|
oveq12d |
|- ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( ( M ` ( e \ A ) ) +e ( M ` ( e i^i A ) ) ) ) |
24 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
25 |
2
|
adantr |
|- ( ( ph /\ e e. ~P O ) -> M : ~P O --> ( 0 [,] +oo ) ) |
26 |
|
simpr |
|- ( ( ph /\ e e. ~P O ) -> e e. ~P O ) |
27 |
26
|
elpwdifcl |
|- ( ( ph /\ e e. ~P O ) -> ( e \ A ) e. ~P O ) |
28 |
25 27
|
ffvelrnd |
|- ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ A ) ) e. ( 0 [,] +oo ) ) |
29 |
24 28
|
sselid |
|- ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ A ) ) e. RR* ) |
30 |
26
|
elpwincl1 |
|- ( ( ph /\ e e. ~P O ) -> ( e i^i A ) e. ~P O ) |
31 |
25 30
|
ffvelrnd |
|- ( ( ph /\ e e. ~P O ) -> ( M ` ( e i^i A ) ) e. ( 0 [,] +oo ) ) |
32 |
24 31
|
sselid |
|- ( ( ph /\ e e. ~P O ) -> ( M ` ( e i^i A ) ) e. RR* ) |
33 |
|
xaddcom |
|- ( ( ( M ` ( e \ A ) ) e. RR* /\ ( M ` ( e i^i A ) ) e. RR* ) -> ( ( M ` ( e \ A ) ) +e ( M ` ( e i^i A ) ) ) = ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) ) |
34 |
29 32 33
|
syl2anc |
|- ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e \ A ) ) +e ( M ` ( e i^i A ) ) ) = ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) ) |
35 |
1 2
|
elcarsg |
|- ( ph -> ( A e. ( toCaraSiga ` M ) <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) ) |
36 |
3 35
|
mpbid |
|- ( ph -> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) |
37 |
36
|
simprd |
|- ( ph -> A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) |
38 |
37
|
r19.21bi |
|- ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) |
39 |
23 34 38
|
3eqtrd |
|- ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) ) |
40 |
39
|
ralrimiva |
|- ( ph -> A. e e. ~P O ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) ) |
41 |
4 40
|
jca |
|- ( ph -> ( ( O \ A ) C_ O /\ A. e e. ~P O ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) ) ) |
42 |
1 2
|
elcarsg |
|- ( ph -> ( ( O \ A ) e. ( toCaraSiga ` M ) <-> ( ( O \ A ) C_ O /\ A. e e. ~P O ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) ) ) ) |
43 |
41 42
|
mpbird |
|- ( ph -> ( O \ A ) e. ( toCaraSiga ` M ) ) |