| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 |  |-  ( ph -> O e. V ) | 
						
							| 2 |  | carsgval.2 |  |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | difelcarsg.1 |  |-  ( ph -> A e. ( toCaraSiga ` M ) ) | 
						
							| 4 |  | difssd |  |-  ( ph -> ( O \ A ) C_ O ) | 
						
							| 5 |  | indif2 |  |-  ( e i^i ( O \ A ) ) = ( ( e i^i O ) \ A ) | 
						
							| 6 |  | elpwi |  |-  ( e e. ~P O -> e C_ O ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ph /\ e e. ~P O ) -> e C_ O ) | 
						
							| 8 |  | dfss2 |  |-  ( e C_ O <-> ( e i^i O ) = e ) | 
						
							| 9 | 7 8 | sylib |  |-  ( ( ph /\ e e. ~P O ) -> ( e i^i O ) = e ) | 
						
							| 10 | 9 | difeq1d |  |-  ( ( ph /\ e e. ~P O ) -> ( ( e i^i O ) \ A ) = ( e \ A ) ) | 
						
							| 11 | 5 10 | eqtrid |  |-  ( ( ph /\ e e. ~P O ) -> ( e i^i ( O \ A ) ) = ( e \ A ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e i^i ( O \ A ) ) ) = ( M ` ( e \ A ) ) ) | 
						
							| 13 |  | difdif2 |  |-  ( e \ ( O \ A ) ) = ( ( e \ O ) u. ( e i^i A ) ) | 
						
							| 14 |  | ssdif0 |  |-  ( e C_ O <-> ( e \ O ) = (/) ) | 
						
							| 15 | 7 14 | sylib |  |-  ( ( ph /\ e e. ~P O ) -> ( e \ O ) = (/) ) | 
						
							| 16 | 15 | uneq1d |  |-  ( ( ph /\ e e. ~P O ) -> ( ( e \ O ) u. ( e i^i A ) ) = ( (/) u. ( e i^i A ) ) ) | 
						
							| 17 |  | uncom |  |-  ( ( e i^i A ) u. (/) ) = ( (/) u. ( e i^i A ) ) | 
						
							| 18 |  | un0 |  |-  ( ( e i^i A ) u. (/) ) = ( e i^i A ) | 
						
							| 19 | 17 18 | eqtr3i |  |-  ( (/) u. ( e i^i A ) ) = ( e i^i A ) | 
						
							| 20 | 16 19 | eqtrdi |  |-  ( ( ph /\ e e. ~P O ) -> ( ( e \ O ) u. ( e i^i A ) ) = ( e i^i A ) ) | 
						
							| 21 | 13 20 | eqtrid |  |-  ( ( ph /\ e e. ~P O ) -> ( e \ ( O \ A ) ) = ( e i^i A ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ ( O \ A ) ) ) = ( M ` ( e i^i A ) ) ) | 
						
							| 23 | 12 22 | oveq12d |  |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( ( M ` ( e \ A ) ) +e ( M ` ( e i^i A ) ) ) ) | 
						
							| 24 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 25 | 2 | adantr |  |-  ( ( ph /\ e e. ~P O ) -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 26 |  | simpr |  |-  ( ( ph /\ e e. ~P O ) -> e e. ~P O ) | 
						
							| 27 | 26 | elpwdifcl |  |-  ( ( ph /\ e e. ~P O ) -> ( e \ A ) e. ~P O ) | 
						
							| 28 | 25 27 | ffvelcdmd |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ A ) ) e. ( 0 [,] +oo ) ) | 
						
							| 29 | 24 28 | sselid |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ A ) ) e. RR* ) | 
						
							| 30 | 26 | elpwincl1 |  |-  ( ( ph /\ e e. ~P O ) -> ( e i^i A ) e. ~P O ) | 
						
							| 31 | 25 30 | ffvelcdmd |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e i^i A ) ) e. ( 0 [,] +oo ) ) | 
						
							| 32 | 24 31 | sselid |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e i^i A ) ) e. RR* ) | 
						
							| 33 |  | xaddcom |  |-  ( ( ( M ` ( e \ A ) ) e. RR* /\ ( M ` ( e i^i A ) ) e. RR* ) -> ( ( M ` ( e \ A ) ) +e ( M ` ( e i^i A ) ) ) = ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) ) | 
						
							| 34 | 29 32 33 | syl2anc |  |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e \ A ) ) +e ( M ` ( e i^i A ) ) ) = ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) ) | 
						
							| 35 | 1 2 | elcarsg |  |-  ( ph -> ( A e. ( toCaraSiga ` M ) <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) ) | 
						
							| 36 | 3 35 | mpbid |  |-  ( ph -> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) | 
						
							| 37 | 36 | simprd |  |-  ( ph -> A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) | 
						
							| 38 | 37 | r19.21bi |  |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) | 
						
							| 39 | 23 34 38 | 3eqtrd |  |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) ) | 
						
							| 40 | 39 | ralrimiva |  |-  ( ph -> A. e e. ~P O ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) ) | 
						
							| 41 | 4 40 | jca |  |-  ( ph -> ( ( O \ A ) C_ O /\ A. e e. ~P O ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) ) ) | 
						
							| 42 | 1 2 | elcarsg |  |-  ( ph -> ( ( O \ A ) e. ( toCaraSiga ` M ) <-> ( ( O \ A ) C_ O /\ A. e e. ~P O ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) ) ) ) | 
						
							| 43 | 41 42 | mpbird |  |-  ( ph -> ( O \ A ) e. ( toCaraSiga ` M ) ) |