Metamath Proof Explorer


Theorem difelcarsg

Description: The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses carsgval.1
|- ( ph -> O e. V )
carsgval.2
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) )
difelcarsg.1
|- ( ph -> A e. ( toCaraSiga ` M ) )
Assertion difelcarsg
|- ( ph -> ( O \ A ) e. ( toCaraSiga ` M ) )

Proof

Step Hyp Ref Expression
1 carsgval.1
 |-  ( ph -> O e. V )
2 carsgval.2
 |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) )
3 difelcarsg.1
 |-  ( ph -> A e. ( toCaraSiga ` M ) )
4 difssd
 |-  ( ph -> ( O \ A ) C_ O )
5 indif2
 |-  ( e i^i ( O \ A ) ) = ( ( e i^i O ) \ A )
6 elpwi
 |-  ( e e. ~P O -> e C_ O )
7 6 adantl
 |-  ( ( ph /\ e e. ~P O ) -> e C_ O )
8 df-ss
 |-  ( e C_ O <-> ( e i^i O ) = e )
9 7 8 sylib
 |-  ( ( ph /\ e e. ~P O ) -> ( e i^i O ) = e )
10 9 difeq1d
 |-  ( ( ph /\ e e. ~P O ) -> ( ( e i^i O ) \ A ) = ( e \ A ) )
11 5 10 syl5eq
 |-  ( ( ph /\ e e. ~P O ) -> ( e i^i ( O \ A ) ) = ( e \ A ) )
12 11 fveq2d
 |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e i^i ( O \ A ) ) ) = ( M ` ( e \ A ) ) )
13 difdif2
 |-  ( e \ ( O \ A ) ) = ( ( e \ O ) u. ( e i^i A ) )
14 ssdif0
 |-  ( e C_ O <-> ( e \ O ) = (/) )
15 7 14 sylib
 |-  ( ( ph /\ e e. ~P O ) -> ( e \ O ) = (/) )
16 15 uneq1d
 |-  ( ( ph /\ e e. ~P O ) -> ( ( e \ O ) u. ( e i^i A ) ) = ( (/) u. ( e i^i A ) ) )
17 uncom
 |-  ( ( e i^i A ) u. (/) ) = ( (/) u. ( e i^i A ) )
18 un0
 |-  ( ( e i^i A ) u. (/) ) = ( e i^i A )
19 17 18 eqtr3i
 |-  ( (/) u. ( e i^i A ) ) = ( e i^i A )
20 16 19 eqtrdi
 |-  ( ( ph /\ e e. ~P O ) -> ( ( e \ O ) u. ( e i^i A ) ) = ( e i^i A ) )
21 13 20 syl5eq
 |-  ( ( ph /\ e e. ~P O ) -> ( e \ ( O \ A ) ) = ( e i^i A ) )
22 21 fveq2d
 |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ ( O \ A ) ) ) = ( M ` ( e i^i A ) ) )
23 12 22 oveq12d
 |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( ( M ` ( e \ A ) ) +e ( M ` ( e i^i A ) ) ) )
24 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
25 2 adantr
 |-  ( ( ph /\ e e. ~P O ) -> M : ~P O --> ( 0 [,] +oo ) )
26 simpr
 |-  ( ( ph /\ e e. ~P O ) -> e e. ~P O )
27 26 elpwdifcl
 |-  ( ( ph /\ e e. ~P O ) -> ( e \ A ) e. ~P O )
28 25 27 ffvelrnd
 |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ A ) ) e. ( 0 [,] +oo ) )
29 24 28 sselid
 |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ A ) ) e. RR* )
30 26 elpwincl1
 |-  ( ( ph /\ e e. ~P O ) -> ( e i^i A ) e. ~P O )
31 25 30 ffvelrnd
 |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e i^i A ) ) e. ( 0 [,] +oo ) )
32 24 31 sselid
 |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e i^i A ) ) e. RR* )
33 xaddcom
 |-  ( ( ( M ` ( e \ A ) ) e. RR* /\ ( M ` ( e i^i A ) ) e. RR* ) -> ( ( M ` ( e \ A ) ) +e ( M ` ( e i^i A ) ) ) = ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) )
34 29 32 33 syl2anc
 |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e \ A ) ) +e ( M ` ( e i^i A ) ) ) = ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) )
35 1 2 elcarsg
 |-  ( ph -> ( A e. ( toCaraSiga ` M ) <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) )
36 3 35 mpbid
 |-  ( ph -> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) )
37 36 simprd
 |-  ( ph -> A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) )
38 37 r19.21bi
 |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) )
39 23 34 38 3eqtrd
 |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) )
40 39 ralrimiva
 |-  ( ph -> A. e e. ~P O ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) )
41 4 40 jca
 |-  ( ph -> ( ( O \ A ) C_ O /\ A. e e. ~P O ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) ) )
42 1 2 elcarsg
 |-  ( ph -> ( ( O \ A ) e. ( toCaraSiga ` M ) <-> ( ( O \ A ) C_ O /\ A. e e. ~P O ( ( M ` ( e i^i ( O \ A ) ) ) +e ( M ` ( e \ ( O \ A ) ) ) ) = ( M ` e ) ) ) )
43 41 42 mpbird
 |-  ( ph -> ( O \ A ) e. ( toCaraSiga ` M ) )