Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elpwincl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝐶 ) | |
| Assertion | elpwincl1 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ 𝒫 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwincl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝐶 ) | |
| 2 | elpwi | ⊢ ( 𝐴 ∈ 𝒫 𝐶 → 𝐴 ⊆ 𝐶 ) | |
| 3 | ssinss1 | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) |
| 5 | inex1g | ⊢ ( 𝐴 ∈ 𝒫 𝐶 → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
| 6 | elpwg | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ V → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝒫 𝐶 ↔ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) ) | |
| 7 | 1 5 6 | 3syl | ⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝒫 𝐶 ↔ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) ) |
| 8 | 4 7 | mpbird | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ 𝒫 𝐶 ) |