Metamath Proof Explorer


Theorem elpwincl1

Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Hypothesis elpwincl.1 φA𝒫C
Assertion elpwincl1 φAB𝒫C

Proof

Step Hyp Ref Expression
1 elpwincl.1 φA𝒫C
2 elpwi A𝒫CAC
3 ssinss1 ACABC
4 1 2 3 3syl φABC
5 inex1g A𝒫CABV
6 elpwg ABVAB𝒫CABC
7 1 5 6 3syl φAB𝒫CABC
8 4 7 mpbird φAB𝒫C