Metamath Proof Explorer


Theorem carsguni

Description: The union of all Caratheodory measurable sets is the universe. (Contributed by Thierry Arnoux, 22-May-2020)

Ref Expression
Hypotheses carsgval.1 φ O V
carsgval.2 φ M : 𝒫 O 0 +∞
baselcarsg.1 φ M = 0
Assertion carsguni φ toCaraSiga M = O

Proof

Step Hyp Ref Expression
1 carsgval.1 φ O V
2 carsgval.2 φ M : 𝒫 O 0 +∞
3 baselcarsg.1 φ M = 0
4 1 2 carsgcl φ toCaraSiga M 𝒫 O
5 4 sselda φ a toCaraSiga M a 𝒫 O
6 5 elpwid φ a toCaraSiga M a O
7 6 ralrimiva φ a toCaraSiga M a O
8 unissb toCaraSiga M O a toCaraSiga M a O
9 7 8 sylibr φ toCaraSiga M O
10 1 2 3 baselcarsg φ O toCaraSiga M
11 unissel toCaraSiga M O O toCaraSiga M toCaraSiga M = O
12 9 10 11 syl2anc φ toCaraSiga M = O