| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 |  |-  ( ph -> O e. V ) | 
						
							| 2 |  | carsgval.2 |  |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | baselcarsg.1 |  |-  ( ph -> ( M ` (/) ) = 0 ) | 
						
							| 4 |  | ssidd |  |-  ( ph -> O C_ O ) | 
						
							| 5 |  | elpwi |  |-  ( e e. ~P O -> e C_ O ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ph /\ e e. ~P O ) -> e C_ O ) | 
						
							| 7 |  | dfss2 |  |-  ( e C_ O <-> ( e i^i O ) = e ) | 
						
							| 8 | 6 7 | sylib |  |-  ( ( ph /\ e e. ~P O ) -> ( e i^i O ) = e ) | 
						
							| 9 | 8 | fveq2d |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e i^i O ) ) = ( M ` e ) ) | 
						
							| 10 |  | ssdif0 |  |-  ( e C_ O <-> ( e \ O ) = (/) ) | 
						
							| 11 | 6 10 | sylib |  |-  ( ( ph /\ e e. ~P O ) -> ( e \ O ) = (/) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ O ) ) = ( M ` (/) ) ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` (/) ) = 0 ) | 
						
							| 14 | 12 13 | eqtrd |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` ( e \ O ) ) = 0 ) | 
						
							| 15 | 9 14 | oveq12d |  |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i O ) ) +e ( M ` ( e \ O ) ) ) = ( ( M ` e ) +e 0 ) ) | 
						
							| 16 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 17 | 2 | adantr |  |-  ( ( ph /\ e e. ~P O ) -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ e e. ~P O ) -> e e. ~P O ) | 
						
							| 19 | 17 18 | ffvelcdmd |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` e ) e. ( 0 [,] +oo ) ) | 
						
							| 20 | 16 19 | sselid |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` e ) e. RR* ) | 
						
							| 21 |  | xaddrid |  |-  ( ( M ` e ) e. RR* -> ( ( M ` e ) +e 0 ) = ( M ` e ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` e ) +e 0 ) = ( M ` e ) ) | 
						
							| 23 | 15 22 | eqtrd |  |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i O ) ) +e ( M ` ( e \ O ) ) ) = ( M ` e ) ) | 
						
							| 24 | 23 | ralrimiva |  |-  ( ph -> A. e e. ~P O ( ( M ` ( e i^i O ) ) +e ( M ` ( e \ O ) ) ) = ( M ` e ) ) | 
						
							| 25 | 4 24 | jca |  |-  ( ph -> ( O C_ O /\ A. e e. ~P O ( ( M ` ( e i^i O ) ) +e ( M ` ( e \ O ) ) ) = ( M ` e ) ) ) | 
						
							| 26 | 1 2 | elcarsg |  |-  ( ph -> ( O e. ( toCaraSiga ` M ) <-> ( O C_ O /\ A. e e. ~P O ( ( M ` ( e i^i O ) ) +e ( M ` ( e \ O ) ) ) = ( M ` e ) ) ) ) | 
						
							| 27 | 25 26 | mpbird |  |-  ( ph -> O e. ( toCaraSiga ` M ) ) |