Metamath Proof Explorer


Theorem xaddid1

Description: Extended real version of addid1 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddid1
|- ( A e. RR* -> ( A +e 0 ) = A )

Proof

Step Hyp Ref Expression
1 elxr
 |-  ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) )
2 0re
 |-  0 e. RR
3 rexadd
 |-  ( ( A e. RR /\ 0 e. RR ) -> ( A +e 0 ) = ( A + 0 ) )
4 2 3 mpan2
 |-  ( A e. RR -> ( A +e 0 ) = ( A + 0 ) )
5 recn
 |-  ( A e. RR -> A e. CC )
6 5 addid1d
 |-  ( A e. RR -> ( A + 0 ) = A )
7 4 6 eqtrd
 |-  ( A e. RR -> ( A +e 0 ) = A )
8 0xr
 |-  0 e. RR*
9 renemnf
 |-  ( 0 e. RR -> 0 =/= -oo )
10 2 9 ax-mp
 |-  0 =/= -oo
11 xaddpnf2
 |-  ( ( 0 e. RR* /\ 0 =/= -oo ) -> ( +oo +e 0 ) = +oo )
12 8 10 11 mp2an
 |-  ( +oo +e 0 ) = +oo
13 oveq1
 |-  ( A = +oo -> ( A +e 0 ) = ( +oo +e 0 ) )
14 id
 |-  ( A = +oo -> A = +oo )
15 12 13 14 3eqtr4a
 |-  ( A = +oo -> ( A +e 0 ) = A )
16 renepnf
 |-  ( 0 e. RR -> 0 =/= +oo )
17 2 16 ax-mp
 |-  0 =/= +oo
18 xaddmnf2
 |-  ( ( 0 e. RR* /\ 0 =/= +oo ) -> ( -oo +e 0 ) = -oo )
19 8 17 18 mp2an
 |-  ( -oo +e 0 ) = -oo
20 oveq1
 |-  ( A = -oo -> ( A +e 0 ) = ( -oo +e 0 ) )
21 id
 |-  ( A = -oo -> A = -oo )
22 19 20 21 3eqtr4a
 |-  ( A = -oo -> ( A +e 0 ) = A )
23 7 15 22 3jaoi
 |-  ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( A +e 0 ) = A )
24 1 23 sylbi
 |-  ( A e. RR* -> ( A +e 0 ) = A )