| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | baselcarsg.1 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 4 |  | 0ss | ⊢ ∅  ⊆  𝑂 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  ∅  ⊆  𝑂 ) | 
						
							| 6 |  | in0 | ⊢ ( 𝑒  ∩  ∅ )  =  ∅ | 
						
							| 7 | 6 | fveq2i | ⊢ ( 𝑀 ‘ ( 𝑒  ∩  ∅ ) )  =  ( 𝑀 ‘ ∅ ) | 
						
							| 8 | 7 3 | eqtrid | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑒  ∩  ∅ ) )  =  0 ) | 
						
							| 9 |  | dif0 | ⊢ ( 𝑒  ∖  ∅ )  =  𝑒 | 
						
							| 10 | 9 | fveq2i | ⊢ ( 𝑀 ‘ ( 𝑒  ∖  ∅ ) )  =  ( 𝑀 ‘ 𝑒 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑒  ∖  ∅ ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 12 | 8 11 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ∅ ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∅ ) ) )  =  ( 0  +𝑒  ( 𝑀 ‘ 𝑒 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ∅ ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∅ ) ) )  =  ( 0  +𝑒  ( 𝑀 ‘ 𝑒 ) ) ) | 
						
							| 14 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 15 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑒 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 16 | 14 15 | sselid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑒 )  ∈  ℝ* ) | 
						
							| 17 |  | xaddlid | ⊢ ( ( 𝑀 ‘ 𝑒 )  ∈  ℝ*  →  ( 0  +𝑒  ( 𝑀 ‘ 𝑒 ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 0  +𝑒  ( 𝑀 ‘ 𝑒 ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 19 | 13 18 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ∅ ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∅ ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ∅ ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∅ ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 21 | 1 2 | elcarsg | ⊢ ( 𝜑  →  ( ∅  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ( ∅  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ∅ ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ∅ ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) ) | 
						
							| 22 | 5 20 21 | mpbir2and | ⊢ ( 𝜑  →  ∅  ∈  ( toCaraSiga ‘ 𝑀 ) ) |