Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
baselcarsg.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
4 |
|
0ss |
⊢ ∅ ⊆ 𝑂 |
5 |
4
|
a1i |
⊢ ( 𝜑 → ∅ ⊆ 𝑂 ) |
6 |
|
in0 |
⊢ ( 𝑒 ∩ ∅ ) = ∅ |
7 |
6
|
fveq2i |
⊢ ( 𝑀 ‘ ( 𝑒 ∩ ∅ ) ) = ( 𝑀 ‘ ∅ ) |
8 |
7 3
|
syl5eq |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑒 ∩ ∅ ) ) = 0 ) |
9 |
|
dif0 |
⊢ ( 𝑒 ∖ ∅ ) = 𝑒 |
10 |
9
|
fveq2i |
⊢ ( 𝑀 ‘ ( 𝑒 ∖ ∅ ) ) = ( 𝑀 ‘ 𝑒 ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑒 ∖ ∅ ) ) = ( 𝑀 ‘ 𝑒 ) ) |
12 |
8 11
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑒 ∩ ∅ ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∅ ) ) ) = ( 0 +𝑒 ( 𝑀 ‘ 𝑒 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ ( 𝑒 ∩ ∅ ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∅ ) ) ) = ( 0 +𝑒 ( 𝑀 ‘ 𝑒 ) ) ) |
14 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
15 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑒 ) ∈ ( 0 [,] +∞ ) ) |
16 |
14 15
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑒 ) ∈ ℝ* ) |
17 |
|
xaddid2 |
⊢ ( ( 𝑀 ‘ 𝑒 ) ∈ ℝ* → ( 0 +𝑒 ( 𝑀 ‘ 𝑒 ) ) = ( 𝑀 ‘ 𝑒 ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 0 +𝑒 ( 𝑀 ‘ 𝑒 ) ) = ( 𝑀 ‘ 𝑒 ) ) |
19 |
13 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ ( 𝑒 ∩ ∅ ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∅ ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∅ ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∅ ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
21 |
1 2
|
elcarsg |
⊢ ( 𝜑 → ( ∅ ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( ∅ ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ∅ ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ∅ ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) ) |
22 |
5 20 21
|
mpbir2and |
⊢ ( 𝜑 → ∅ ∈ ( toCaraSiga ‘ 𝑀 ) ) |