Metamath Proof Explorer


Definition df-cart

Description: Define the cartesian product function. See brcart for its value. (Contributed by Scott Fenton, 11-Apr-2014)

Ref Expression
Assertion df-cart Cart = ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccart Cart
1 cvv V
2 1 1 cxp ( V × V )
3 2 1 cxp ( ( V × V ) × V )
4 cep E
5 1 4 ctxp ( V ⊗ E )
6 4 4 cpprod pprod ( E , E )
7 6 1 ctxp ( pprod ( E , E ) ⊗ V )
8 5 7 csymdif ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) )
9 8 crn ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) )
10 3 9 cdif ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) )
11 0 10 wceq Cart = ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) )