Description: Define the cartesian product function. See brcart for its value. (Contributed by Scott Fenton, 11-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cart | ⊢ Cart = ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccart | ⊢ Cart | |
1 | cvv | ⊢ V | |
2 | 1 1 | cxp | ⊢ ( V × V ) |
3 | 2 1 | cxp | ⊢ ( ( V × V ) × V ) |
4 | cep | ⊢ E | |
5 | 1 4 | ctxp | ⊢ ( V ⊗ E ) |
6 | 4 4 | cpprod | ⊢ pprod ( E , E ) |
7 | 6 1 | ctxp | ⊢ ( pprod ( E , E ) ⊗ V ) |
8 | 5 7 | csymdif | ⊢ ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) |
9 | 8 | crn | ⊢ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) |
10 | 3 9 | cdif | ⊢ ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) ) |
11 | 0 10 | wceq | ⊢ Cart = ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) ) |