Description: Define the cartesian product function. See brcart for its value. (Contributed by Scott Fenton, 11-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cart | ⊢ Cart = ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | ccart | ⊢ Cart | |
| 1 | cvv | ⊢ V | |
| 2 | 1 1 | cxp | ⊢ ( V × V ) | 
| 3 | 2 1 | cxp | ⊢ ( ( V × V ) × V ) | 
| 4 | cep | ⊢ E | |
| 5 | 1 4 | ctxp | ⊢ ( V ⊗ E ) | 
| 6 | 4 4 | cpprod | ⊢ pprod ( E , E ) | 
| 7 | 6 1 | ctxp | ⊢ ( pprod ( E , E ) ⊗ V ) | 
| 8 | 5 7 | csymdif | ⊢ ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) | 
| 9 | 8 | crn | ⊢ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) | 
| 10 | 3 9 | cdif | ⊢ ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) ) | 
| 11 | 0 10 | wceq | ⊢ Cart = ( ( ( V × V ) × V ) ∖ ran ( ( V ⊗ E ) △ ( pprod ( E , E ) ⊗ V ) ) ) |