Step |
Hyp |
Ref |
Expression |
0 |
|
ccart |
|- Cart |
1 |
|
cvv |
|- _V |
2 |
1 1
|
cxp |
|- ( _V X. _V ) |
3 |
2 1
|
cxp |
|- ( ( _V X. _V ) X. _V ) |
4 |
|
cep |
|- _E |
5 |
1 4
|
ctxp |
|- ( _V (x) _E ) |
6 |
4 4
|
cpprod |
|- pprod ( _E , _E ) |
7 |
6 1
|
ctxp |
|- ( pprod ( _E , _E ) (x) _V ) |
8 |
5 7
|
csymdif |
|- ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) |
9 |
8
|
crn |
|- ran ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) |
10 |
3 9
|
cdif |
|- ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) ) |
11 |
0 10
|
wceq |
|- Cart = ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) ) |