Step |
Hyp |
Ref |
Expression |
1 |
|
brcart.1 |
|- A e. _V |
2 |
|
brcart.2 |
|- B e. _V |
3 |
|
brcart.3 |
|- C e. _V |
4 |
|
opex |
|- <. A , B >. e. _V |
5 |
|
df-cart |
|- Cart = ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) ) |
6 |
1 2
|
opelvv |
|- <. A , B >. e. ( _V X. _V ) |
7 |
|
brxp |
|- ( <. A , B >. ( ( _V X. _V ) X. _V ) C <-> ( <. A , B >. e. ( _V X. _V ) /\ C e. _V ) ) |
8 |
6 3 7
|
mpbir2an |
|- <. A , B >. ( ( _V X. _V ) X. _V ) C |
9 |
|
3anass |
|- ( ( x = <. y , z >. /\ y _E A /\ z _E B ) <-> ( x = <. y , z >. /\ ( y _E A /\ z _E B ) ) ) |
10 |
1
|
epeli |
|- ( y _E A <-> y e. A ) |
11 |
2
|
epeli |
|- ( z _E B <-> z e. B ) |
12 |
10 11
|
anbi12i |
|- ( ( y _E A /\ z _E B ) <-> ( y e. A /\ z e. B ) ) |
13 |
12
|
anbi2i |
|- ( ( x = <. y , z >. /\ ( y _E A /\ z _E B ) ) <-> ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
14 |
9 13
|
bitri |
|- ( ( x = <. y , z >. /\ y _E A /\ z _E B ) <-> ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
15 |
14
|
2exbii |
|- ( E. y E. z ( x = <. y , z >. /\ y _E A /\ z _E B ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
16 |
|
vex |
|- x e. _V |
17 |
16 1 2
|
brpprod3b |
|- ( x pprod ( _E , _E ) <. A , B >. <-> E. y E. z ( x = <. y , z >. /\ y _E A /\ z _E B ) ) |
18 |
|
elxp |
|- ( x e. ( A X. B ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
19 |
15 17 18
|
3bitr4ri |
|- ( x e. ( A X. B ) <-> x pprod ( _E , _E ) <. A , B >. ) |
20 |
4 3 5 8 19
|
brtxpsd3 |
|- ( <. A , B >. Cart C <-> C = ( A X. B ) ) |