| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brcart.1 |
|- A e. _V |
| 2 |
|
brcart.2 |
|- B e. _V |
| 3 |
|
brcart.3 |
|- C e. _V |
| 4 |
|
opex |
|- <. A , B >. e. _V |
| 5 |
|
df-cart |
|- Cart = ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) ) |
| 6 |
1 2
|
opelvv |
|- <. A , B >. e. ( _V X. _V ) |
| 7 |
|
brxp |
|- ( <. A , B >. ( ( _V X. _V ) X. _V ) C <-> ( <. A , B >. e. ( _V X. _V ) /\ C e. _V ) ) |
| 8 |
6 3 7
|
mpbir2an |
|- <. A , B >. ( ( _V X. _V ) X. _V ) C |
| 9 |
|
3anass |
|- ( ( x = <. y , z >. /\ y _E A /\ z _E B ) <-> ( x = <. y , z >. /\ ( y _E A /\ z _E B ) ) ) |
| 10 |
1
|
epeli |
|- ( y _E A <-> y e. A ) |
| 11 |
2
|
epeli |
|- ( z _E B <-> z e. B ) |
| 12 |
10 11
|
anbi12i |
|- ( ( y _E A /\ z _E B ) <-> ( y e. A /\ z e. B ) ) |
| 13 |
12
|
anbi2i |
|- ( ( x = <. y , z >. /\ ( y _E A /\ z _E B ) ) <-> ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
| 14 |
9 13
|
bitri |
|- ( ( x = <. y , z >. /\ y _E A /\ z _E B ) <-> ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
| 15 |
14
|
2exbii |
|- ( E. y E. z ( x = <. y , z >. /\ y _E A /\ z _E B ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
| 16 |
|
vex |
|- x e. _V |
| 17 |
16 1 2
|
brpprod3b |
|- ( x pprod ( _E , _E ) <. A , B >. <-> E. y E. z ( x = <. y , z >. /\ y _E A /\ z _E B ) ) |
| 18 |
|
elxp |
|- ( x e. ( A X. B ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
| 19 |
15 17 18
|
3bitr4ri |
|- ( x e. ( A X. B ) <-> x pprod ( _E , _E ) <. A , B >. ) |
| 20 |
4 3 5 8 19
|
brtxpsd3 |
|- ( <. A , B >. Cart C <-> C = ( A X. B ) ) |