Description: Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brdomain.1 | |- A e. _V |
|
| brdomain.2 | |- B e. _V |
||
| Assertion | brdomain | |- ( A Domain B <-> B = dom A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomain.1 | |- A e. _V |
|
| 2 | brdomain.2 | |- B e. _V |
|
| 3 | 1 2 | brimage | |- ( A Image ( 1st |` ( _V X. _V ) ) B <-> B = ( ( 1st |` ( _V X. _V ) ) " A ) ) |
| 4 | df-domain | |- Domain = Image ( 1st |` ( _V X. _V ) ) |
|
| 5 | 4 | breqi | |- ( A Domain B <-> A Image ( 1st |` ( _V X. _V ) ) B ) |
| 6 | dfdm5 | |- dom A = ( ( 1st |` ( _V X. _V ) ) " A ) |
|
| 7 | 6 | eqeq2i | |- ( B = dom A <-> B = ( ( 1st |` ( _V X. _V ) ) " A ) ) |
| 8 | 3 5 7 | 3bitr4i | |- ( A Domain B <-> B = dom A ) |