Step |
Hyp |
Ref |
Expression |
1 |
|
excom |
|- ( E. y E. p E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) <-> E. p E. y E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
2 |
|
opex |
|- <. z , y >. e. _V |
3 |
|
breq1 |
|- ( p = <. z , y >. -> ( p 1st x <-> <. z , y >. 1st x ) ) |
4 |
|
eleq1 |
|- ( p = <. z , y >. -> ( p e. A <-> <. z , y >. e. A ) ) |
5 |
3 4
|
anbi12d |
|- ( p = <. z , y >. -> ( ( p 1st x /\ p e. A ) <-> ( <. z , y >. 1st x /\ <. z , y >. e. A ) ) ) |
6 |
|
vex |
|- z e. _V |
7 |
|
vex |
|- y e. _V |
8 |
6 7
|
br1steq |
|- ( <. z , y >. 1st x <-> x = z ) |
9 |
|
equcom |
|- ( x = z <-> z = x ) |
10 |
8 9
|
bitri |
|- ( <. z , y >. 1st x <-> z = x ) |
11 |
10
|
anbi1i |
|- ( ( <. z , y >. 1st x /\ <. z , y >. e. A ) <-> ( z = x /\ <. z , y >. e. A ) ) |
12 |
5 11
|
bitrdi |
|- ( p = <. z , y >. -> ( ( p 1st x /\ p e. A ) <-> ( z = x /\ <. z , y >. e. A ) ) ) |
13 |
2 12
|
ceqsexv |
|- ( E. p ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) <-> ( z = x /\ <. z , y >. e. A ) ) |
14 |
13
|
exbii |
|- ( E. z E. p ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) <-> E. z ( z = x /\ <. z , y >. e. A ) ) |
15 |
|
excom |
|- ( E. z E. p ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) <-> E. p E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
16 |
|
vex |
|- x e. _V |
17 |
|
opeq1 |
|- ( z = x -> <. z , y >. = <. x , y >. ) |
18 |
17
|
eleq1d |
|- ( z = x -> ( <. z , y >. e. A <-> <. x , y >. e. A ) ) |
19 |
16 18
|
ceqsexv |
|- ( E. z ( z = x /\ <. z , y >. e. A ) <-> <. x , y >. e. A ) |
20 |
14 15 19
|
3bitr3ri |
|- ( <. x , y >. e. A <-> E. p E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
21 |
20
|
exbii |
|- ( E. y <. x , y >. e. A <-> E. y E. p E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
22 |
|
ancom |
|- ( ( p e. A /\ p ( 1st |` ( _V X. _V ) ) x ) <-> ( p ( 1st |` ( _V X. _V ) ) x /\ p e. A ) ) |
23 |
|
anass |
|- ( ( ( E. y E. z p = <. z , y >. /\ p 1st x ) /\ p e. A ) <-> ( E. y E. z p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
24 |
16
|
brresi |
|- ( p ( 1st |` ( _V X. _V ) ) x <-> ( p e. ( _V X. _V ) /\ p 1st x ) ) |
25 |
|
elvv |
|- ( p e. ( _V X. _V ) <-> E. z E. y p = <. z , y >. ) |
26 |
|
excom |
|- ( E. z E. y p = <. z , y >. <-> E. y E. z p = <. z , y >. ) |
27 |
25 26
|
bitri |
|- ( p e. ( _V X. _V ) <-> E. y E. z p = <. z , y >. ) |
28 |
27
|
anbi1i |
|- ( ( p e. ( _V X. _V ) /\ p 1st x ) <-> ( E. y E. z p = <. z , y >. /\ p 1st x ) ) |
29 |
24 28
|
bitri |
|- ( p ( 1st |` ( _V X. _V ) ) x <-> ( E. y E. z p = <. z , y >. /\ p 1st x ) ) |
30 |
29
|
anbi1i |
|- ( ( p ( 1st |` ( _V X. _V ) ) x /\ p e. A ) <-> ( ( E. y E. z p = <. z , y >. /\ p 1st x ) /\ p e. A ) ) |
31 |
|
19.41vv |
|- ( E. y E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) <-> ( E. y E. z p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
32 |
23 30 31
|
3bitr4i |
|- ( ( p ( 1st |` ( _V X. _V ) ) x /\ p e. A ) <-> E. y E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
33 |
22 32
|
bitri |
|- ( ( p e. A /\ p ( 1st |` ( _V X. _V ) ) x ) <-> E. y E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
34 |
33
|
exbii |
|- ( E. p ( p e. A /\ p ( 1st |` ( _V X. _V ) ) x ) <-> E. p E. y E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
35 |
1 21 34
|
3bitr4i |
|- ( E. y <. x , y >. e. A <-> E. p ( p e. A /\ p ( 1st |` ( _V X. _V ) ) x ) ) |
36 |
16
|
eldm2 |
|- ( x e. dom A <-> E. y <. x , y >. e. A ) |
37 |
16
|
elima2 |
|- ( x e. ( ( 1st |` ( _V X. _V ) ) " A ) <-> E. p ( p e. A /\ p ( 1st |` ( _V X. _V ) ) x ) ) |
38 |
35 36 37
|
3bitr4i |
|- ( x e. dom A <-> x e. ( ( 1st |` ( _V X. _V ) ) " A ) ) |
39 |
38
|
eqriv |
|- dom A = ( ( 1st |` ( _V X. _V ) ) " A ) |