Step |
Hyp |
Ref |
Expression |
1 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ∃ 𝑝 ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
2 |
|
opex |
⊢ 〈 𝑧 , 𝑦 〉 ∈ V |
3 |
|
breq1 |
⊢ ( 𝑝 = 〈 𝑧 , 𝑦 〉 → ( 𝑝 1st 𝑥 ↔ 〈 𝑧 , 𝑦 〉 1st 𝑥 ) ) |
4 |
|
eleq1 |
⊢ ( 𝑝 = 〈 𝑧 , 𝑦 〉 → ( 𝑝 ∈ 𝐴 ↔ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑝 = 〈 𝑧 , 𝑦 〉 → ( ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ( 〈 𝑧 , 𝑦 〉 1st 𝑥 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) ) |
6 |
|
vex |
⊢ 𝑧 ∈ V |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
6 7
|
br1steq |
⊢ ( 〈 𝑧 , 𝑦 〉 1st 𝑥 ↔ 𝑥 = 𝑧 ) |
9 |
|
equcom |
⊢ ( 𝑥 = 𝑧 ↔ 𝑧 = 𝑥 ) |
10 |
8 9
|
bitri |
⊢ ( 〈 𝑧 , 𝑦 〉 1st 𝑥 ↔ 𝑧 = 𝑥 ) |
11 |
10
|
anbi1i |
⊢ ( ( 〈 𝑧 , 𝑦 〉 1st 𝑥 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ↔ ( 𝑧 = 𝑥 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) |
12 |
5 11
|
bitrdi |
⊢ ( 𝑝 = 〈 𝑧 , 𝑦 〉 → ( ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ( 𝑧 = 𝑥 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) ) |
13 |
2 12
|
ceqsexv |
⊢ ( ∃ 𝑝 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ( 𝑧 = 𝑥 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) |
14 |
13
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑝 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) |
15 |
|
excom |
⊢ ( ∃ 𝑧 ∃ 𝑝 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
16 |
|
vex |
⊢ 𝑥 ∈ V |
17 |
|
opeq1 |
⊢ ( 𝑧 = 𝑥 → 〈 𝑧 , 𝑦 〉 = 〈 𝑥 , 𝑦 〉 ) |
18 |
17
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
19 |
16 18
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
20 |
14 15 19
|
3bitr3ri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
21 |
20
|
exbii |
⊢ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ ∃ 𝑦 ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
22 |
|
ancom |
⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 1st ↾ ( V × V ) ) 𝑥 ) ↔ ( 𝑝 ( 1st ↾ ( V × V ) ) 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) |
23 |
|
anass |
⊢ ( ( ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ 𝑝 1st 𝑥 ) ∧ 𝑝 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
24 |
16
|
brresi |
⊢ ( 𝑝 ( 1st ↾ ( V × V ) ) 𝑥 ↔ ( 𝑝 ∈ ( V × V ) ∧ 𝑝 1st 𝑥 ) ) |
25 |
|
elvv |
⊢ ( 𝑝 ∈ ( V × V ) ↔ ∃ 𝑧 ∃ 𝑦 𝑝 = 〈 𝑧 , 𝑦 〉 ) |
26 |
|
excom |
⊢ ( ∃ 𝑧 ∃ 𝑦 𝑝 = 〈 𝑧 , 𝑦 〉 ↔ ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑧 , 𝑦 〉 ) |
27 |
25 26
|
bitri |
⊢ ( 𝑝 ∈ ( V × V ) ↔ ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑧 , 𝑦 〉 ) |
28 |
27
|
anbi1i |
⊢ ( ( 𝑝 ∈ ( V × V ) ∧ 𝑝 1st 𝑥 ) ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ 𝑝 1st 𝑥 ) ) |
29 |
24 28
|
bitri |
⊢ ( 𝑝 ( 1st ↾ ( V × V ) ) 𝑥 ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ 𝑝 1st 𝑥 ) ) |
30 |
29
|
anbi1i |
⊢ ( ( 𝑝 ( 1st ↾ ( V × V ) ) 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ( ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ 𝑝 1st 𝑥 ) ∧ 𝑝 ∈ 𝐴 ) ) |
31 |
|
19.41vv |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
32 |
23 30 31
|
3bitr4i |
⊢ ( ( 𝑝 ( 1st ↾ ( V × V ) ) 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
33 |
22 32
|
bitri |
⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 1st ↾ ( V × V ) ) 𝑥 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
34 |
33
|
exbii |
⊢ ( ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 1st ↾ ( V × V ) ) 𝑥 ) ↔ ∃ 𝑝 ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑝 1st 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
35 |
1 21 34
|
3bitr4i |
⊢ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 1st ↾ ( V × V ) ) 𝑥 ) ) |
36 |
16
|
eldm2 |
⊢ ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
37 |
16
|
elima2 |
⊢ ( 𝑥 ∈ ( ( 1st ↾ ( V × V ) ) “ 𝐴 ) ↔ ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 1st ↾ ( V × V ) ) 𝑥 ) ) |
38 |
35 36 37
|
3bitr4i |
⊢ ( 𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ ( ( 1st ↾ ( V × V ) ) “ 𝐴 ) ) |
39 |
38
|
eqriv |
⊢ dom 𝐴 = ( ( 1st ↾ ( V × V ) ) “ 𝐴 ) |