Step |
Hyp |
Ref |
Expression |
1 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ∃ 𝑝 ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
2 |
|
opex |
⊢ 〈 𝑦 , 𝑧 〉 ∈ V |
3 |
|
breq1 |
⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( 𝑝 2nd 𝑥 ↔ 〈 𝑦 , 𝑧 〉 2nd 𝑥 ) ) |
4 |
|
eleq1 |
⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( 𝑝 ∈ 𝐴 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ( 〈 𝑦 , 𝑧 〉 2nd 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) ) |
6 |
|
vex |
⊢ 𝑦 ∈ V |
7 |
|
vex |
⊢ 𝑧 ∈ V |
8 |
6 7
|
br2ndeq |
⊢ ( 〈 𝑦 , 𝑧 〉 2nd 𝑥 ↔ 𝑥 = 𝑧 ) |
9 |
|
equcom |
⊢ ( 𝑥 = 𝑧 ↔ 𝑧 = 𝑥 ) |
10 |
8 9
|
bitri |
⊢ ( 〈 𝑦 , 𝑧 〉 2nd 𝑥 ↔ 𝑧 = 𝑥 ) |
11 |
10
|
anbi1i |
⊢ ( ( 〈 𝑦 , 𝑧 〉 2nd 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ↔ ( 𝑧 = 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) |
12 |
5 11
|
bitrdi |
⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ( 𝑧 = 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) ) |
13 |
2 12
|
ceqsexv |
⊢ ( ∃ 𝑝 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ( 𝑧 = 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) |
14 |
13
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑝 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) |
15 |
|
excom |
⊢ ( ∃ 𝑧 ∃ 𝑝 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
16 |
|
vex |
⊢ 𝑥 ∈ V |
17 |
|
opeq2 |
⊢ ( 𝑧 = 𝑥 → 〈 𝑦 , 𝑧 〉 = 〈 𝑦 , 𝑥 〉 ) |
18 |
17
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ↔ 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ) ) |
19 |
16 18
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ↔ 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ) |
20 |
14 15 19
|
3bitr3ri |
⊢ ( 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ↔ ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
21 |
20
|
exbii |
⊢ ( ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ↔ ∃ 𝑦 ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
22 |
|
ancom |
⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ) ↔ ( 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) |
23 |
|
anass |
⊢ ( ( ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ 𝑝 2nd 𝑥 ) ∧ 𝑝 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
24 |
16
|
brresi |
⊢ ( 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ↔ ( 𝑝 ∈ ( V × V ) ∧ 𝑝 2nd 𝑥 ) ) |
25 |
|
elvv |
⊢ ( 𝑝 ∈ ( V × V ) ↔ ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ) |
26 |
25
|
anbi1i |
⊢ ( ( 𝑝 ∈ ( V × V ) ∧ 𝑝 2nd 𝑥 ) ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ 𝑝 2nd 𝑥 ) ) |
27 |
24 26
|
bitri |
⊢ ( 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ 𝑝 2nd 𝑥 ) ) |
28 |
27
|
anbi1i |
⊢ ( ( 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ( ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ 𝑝 2nd 𝑥 ) ∧ 𝑝 ∈ 𝐴 ) ) |
29 |
|
19.41vv |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
30 |
23 28 29
|
3bitr4i |
⊢ ( ( 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
31 |
22 30
|
bitri |
⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
32 |
31
|
exbii |
⊢ ( ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ) ↔ ∃ 𝑝 ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
33 |
1 21 32
|
3bitr4i |
⊢ ( ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ↔ ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ) ) |
34 |
16
|
elrn2 |
⊢ ( 𝑥 ∈ ran 𝐴 ↔ ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ) |
35 |
16
|
elima2 |
⊢ ( 𝑥 ∈ ( ( 2nd ↾ ( V × V ) ) “ 𝐴 ) ↔ ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ) ) |
36 |
33 34 35
|
3bitr4i |
⊢ ( 𝑥 ∈ ran 𝐴 ↔ 𝑥 ∈ ( ( 2nd ↾ ( V × V ) ) “ 𝐴 ) ) |
37 |
36
|
eqriv |
⊢ ran 𝐴 = ( ( 2nd ↾ ( V × V ) ) “ 𝐴 ) |