Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ∘ 𝐷 ) ) |
2 |
|
relco |
⊢ Rel ( 𝐶 ∘ 𝐷 ) |
3 |
2
|
brrelex12i |
⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
4 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
5 |
|
noel |
⊢ ¬ 𝐵 ∈ ∅ |
6 |
|
imaeq2 |
⊢ ( { 𝐴 } = ∅ → ( 𝐷 “ { 𝐴 } ) = ( 𝐷 “ ∅ ) ) |
7 |
6
|
imaeq2d |
⊢ ( { 𝐴 } = ∅ → ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) = ( 𝐶 “ ( 𝐷 “ ∅ ) ) ) |
8 |
|
ima0 |
⊢ ( 𝐷 “ ∅ ) = ∅ |
9 |
8
|
imaeq2i |
⊢ ( 𝐶 “ ( 𝐷 “ ∅ ) ) = ( 𝐶 “ ∅ ) |
10 |
|
ima0 |
⊢ ( 𝐶 “ ∅ ) = ∅ |
11 |
9 10
|
eqtri |
⊢ ( 𝐶 “ ( 𝐷 “ ∅ ) ) = ∅ |
12 |
7 11
|
eqtrdi |
⊢ ( { 𝐴 } = ∅ → ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) = ∅ ) |
13 |
12
|
eleq2d |
⊢ ( { 𝐴 } = ∅ → ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ↔ 𝐵 ∈ ∅ ) ) |
14 |
5 13
|
mtbiri |
⊢ ( { 𝐴 } = ∅ → ¬ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) |
15 |
4 14
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) |
16 |
15
|
con4i |
⊢ ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) → 𝐴 ∈ V ) |
17 |
|
elex |
⊢ ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) → 𝐵 ∈ V ) |
18 |
16 17
|
jca |
⊢ ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
19 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) 𝑧 𝐶 𝐵 ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ∧ 𝑧 𝐶 𝐵 ) ) |
20 |
|
elimasng |
⊢ ( ( 𝐴 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝑧 〉 ∈ 𝐷 ) ) |
21 |
20
|
elvd |
⊢ ( 𝐴 ∈ V → ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝑧 〉 ∈ 𝐷 ) ) |
22 |
|
df-br |
⊢ ( 𝐴 𝐷 𝑧 ↔ 〈 𝐴 , 𝑧 〉 ∈ 𝐷 ) |
23 |
21 22
|
bitr4di |
⊢ ( 𝐴 ∈ V → ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 𝐴 𝐷 𝑧 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 𝐴 𝐷 𝑧 ) ) |
25 |
24
|
anbi1d |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ∧ 𝑧 𝐶 𝐵 ) ↔ ( 𝐴 𝐷 𝑧 ∧ 𝑧 𝐶 𝐵 ) ) ) |
26 |
25
|
exbidv |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∃ 𝑧 ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ∧ 𝑧 𝐶 𝐵 ) ↔ ∃ 𝑧 ( 𝐴 𝐷 𝑧 ∧ 𝑧 𝐶 𝐵 ) ) ) |
27 |
19 26
|
bitr2id |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∃ 𝑧 ( 𝐴 𝐷 𝑧 ∧ 𝑧 𝐶 𝐵 ) ↔ ∃ 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) 𝑧 𝐶 𝐵 ) ) |
28 |
|
brcog |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑧 ( 𝐴 𝐷 𝑧 ∧ 𝑧 𝐶 𝐵 ) ) ) |
29 |
|
elimag |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ↔ ∃ 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) 𝑧 𝐶 𝐵 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ↔ ∃ 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) 𝑧 𝐶 𝐵 ) ) |
31 |
27 28 30
|
3bitr4d |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) ) |
32 |
3 18 31
|
pm5.21nii |
⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) |
33 |
1 32
|
bitr3i |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ∘ 𝐷 ) ↔ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) |