Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
|- ( A ( C o. D ) B <-> <. A , B >. e. ( C o. D ) ) |
2 |
|
relco |
|- Rel ( C o. D ) |
3 |
2
|
brrelex12i |
|- ( A ( C o. D ) B -> ( A e. _V /\ B e. _V ) ) |
4 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
5 |
|
noel |
|- -. B e. (/) |
6 |
|
imaeq2 |
|- ( { A } = (/) -> ( D " { A } ) = ( D " (/) ) ) |
7 |
6
|
imaeq2d |
|- ( { A } = (/) -> ( C " ( D " { A } ) ) = ( C " ( D " (/) ) ) ) |
8 |
|
ima0 |
|- ( D " (/) ) = (/) |
9 |
8
|
imaeq2i |
|- ( C " ( D " (/) ) ) = ( C " (/) ) |
10 |
|
ima0 |
|- ( C " (/) ) = (/) |
11 |
9 10
|
eqtri |
|- ( C " ( D " (/) ) ) = (/) |
12 |
7 11
|
eqtrdi |
|- ( { A } = (/) -> ( C " ( D " { A } ) ) = (/) ) |
13 |
12
|
eleq2d |
|- ( { A } = (/) -> ( B e. ( C " ( D " { A } ) ) <-> B e. (/) ) ) |
14 |
5 13
|
mtbiri |
|- ( { A } = (/) -> -. B e. ( C " ( D " { A } ) ) ) |
15 |
4 14
|
sylbi |
|- ( -. A e. _V -> -. B e. ( C " ( D " { A } ) ) ) |
16 |
15
|
con4i |
|- ( B e. ( C " ( D " { A } ) ) -> A e. _V ) |
17 |
|
elex |
|- ( B e. ( C " ( D " { A } ) ) -> B e. _V ) |
18 |
16 17
|
jca |
|- ( B e. ( C " ( D " { A } ) ) -> ( A e. _V /\ B e. _V ) ) |
19 |
|
df-rex |
|- ( E. z e. ( D " { A } ) z C B <-> E. z ( z e. ( D " { A } ) /\ z C B ) ) |
20 |
|
elimasng |
|- ( ( A e. _V /\ z e. _V ) -> ( z e. ( D " { A } ) <-> <. A , z >. e. D ) ) |
21 |
20
|
elvd |
|- ( A e. _V -> ( z e. ( D " { A } ) <-> <. A , z >. e. D ) ) |
22 |
|
df-br |
|- ( A D z <-> <. A , z >. e. D ) |
23 |
21 22
|
bitr4di |
|- ( A e. _V -> ( z e. ( D " { A } ) <-> A D z ) ) |
24 |
23
|
adantr |
|- ( ( A e. _V /\ B e. _V ) -> ( z e. ( D " { A } ) <-> A D z ) ) |
25 |
24
|
anbi1d |
|- ( ( A e. _V /\ B e. _V ) -> ( ( z e. ( D " { A } ) /\ z C B ) <-> ( A D z /\ z C B ) ) ) |
26 |
25
|
exbidv |
|- ( ( A e. _V /\ B e. _V ) -> ( E. z ( z e. ( D " { A } ) /\ z C B ) <-> E. z ( A D z /\ z C B ) ) ) |
27 |
19 26
|
bitr2id |
|- ( ( A e. _V /\ B e. _V ) -> ( E. z ( A D z /\ z C B ) <-> E. z e. ( D " { A } ) z C B ) ) |
28 |
|
brcog |
|- ( ( A e. _V /\ B e. _V ) -> ( A ( C o. D ) B <-> E. z ( A D z /\ z C B ) ) ) |
29 |
|
elimag |
|- ( B e. _V -> ( B e. ( C " ( D " { A } ) ) <-> E. z e. ( D " { A } ) z C B ) ) |
30 |
29
|
adantl |
|- ( ( A e. _V /\ B e. _V ) -> ( B e. ( C " ( D " { A } ) ) <-> E. z e. ( D " { A } ) z C B ) ) |
31 |
27 28 30
|
3bitr4d |
|- ( ( A e. _V /\ B e. _V ) -> ( A ( C o. D ) B <-> B e. ( C " ( D " { A } ) ) ) ) |
32 |
3 18 31
|
pm5.21nii |
|- ( A ( C o. D ) B <-> B e. ( C " ( D " { A } ) ) ) |
33 |
1 32
|
bitr3i |
|- ( <. A , B >. e. ( C o. D ) <-> B e. ( C " ( D " { A } ) ) ) |