Metamath Proof Explorer


Theorem opelco3

Description: Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018)

Ref Expression
Assertion opelco3 A B C D B C D A

Proof

Step Hyp Ref Expression
1 df-br A C D B A B C D
2 relco Rel C D
3 2 brrelex12i A C D B A V B V
4 snprc ¬ A V A =
5 noel ¬ B
6 imaeq2 A = D A = D
7 6 imaeq2d A = C D A = C D
8 ima0 D =
9 8 imaeq2i C D = C
10 ima0 C =
11 9 10 eqtri C D =
12 7 11 eqtrdi A = C D A =
13 12 eleq2d A = B C D A B
14 5 13 mtbiri A = ¬ B C D A
15 4 14 sylbi ¬ A V ¬ B C D A
16 15 con4i B C D A A V
17 elex B C D A B V
18 16 17 jca B C D A A V B V
19 df-rex z D A z C B z z D A z C B
20 elimasng A V z V z D A A z D
21 20 elvd A V z D A A z D
22 df-br A D z A z D
23 21 22 bitr4di A V z D A A D z
24 23 adantr A V B V z D A A D z
25 24 anbi1d A V B V z D A z C B A D z z C B
26 25 exbidv A V B V z z D A z C B z A D z z C B
27 19 26 bitr2id A V B V z A D z z C B z D A z C B
28 brcog A V B V A C D B z A D z z C B
29 elimag B V B C D A z D A z C B
30 29 adantl A V B V B C D A z D A z C B
31 27 28 30 3bitr4d A V B V A C D B B C D A
32 3 18 31 pm5.21nii A C D B B C D A
33 1 32 bitr3i A B C D B C D A