Metamath Proof Explorer


Theorem brdomain

Description: Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brdomain.1 AV
brdomain.2 BV
Assertion brdomain A𝖣𝗈𝗆𝖺𝗂𝗇BB=domA

Proof

Step Hyp Ref Expression
1 brdomain.1 AV
2 brdomain.2 BV
3 1 2 brimage A𝖨𝗆𝖺𝗀𝖾1stV×VBB=1stV×VA
4 df-domain 𝖣𝗈𝗆𝖺𝗂𝗇=𝖨𝗆𝖺𝗀𝖾1stV×V
5 4 breqi A𝖣𝗈𝗆𝖺𝗂𝗇BA𝖨𝗆𝖺𝗀𝖾1stV×VB
6 dfdm5 domA=1stV×VA
7 6 eqeq2i B=domAB=1stV×VA
8 3 5 7 3bitr4i A𝖣𝗈𝗆𝖺𝗂𝗇BB=domA