Metamath Proof Explorer


Theorem brimage

Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brimage.1 AV
brimage.2 BV
Assertion brimage A𝖨𝗆𝖺𝗀𝖾RBB=RA

Proof

Step Hyp Ref Expression
1 brimage.1 AV
2 brimage.2 BV
3 df-image 𝖨𝗆𝖺𝗀𝖾R=V×VranVEER-1V
4 brxp AV×VBAVBV
5 1 2 4 mpbir2an AV×VB
6 vex xV
7 vex yV
8 6 7 brcnv xR-1yyRx
9 8 rexbii yAxR-1yyAyRx
10 6 1 coep xER-1AyAxR-1y
11 6 elima xRAyAyRx
12 9 10 11 3bitr4ri xRAxER-1A
13 1 2 3 5 12 brtxpsd3 A𝖨𝗆𝖺𝗀𝖾RBB=RA