Metamath Proof Explorer


Theorem brimage

Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brimage.1 A V
brimage.2 B V
Assertion brimage A 𝖨𝗆𝖺𝗀𝖾 R B B = R A

Proof

Step Hyp Ref Expression
1 brimage.1 A V
2 brimage.2 B V
3 df-image 𝖨𝗆𝖺𝗀𝖾 R = V × V ran V E E R -1 V
4 brxp A V × V B A V B V
5 1 2 4 mpbir2an A V × V B
6 vex x V
7 vex y V
8 6 7 brcnv x R -1 y y R x
9 8 rexbii y A x R -1 y y A y R x
10 6 1 coep x E R -1 A y A x R -1 y
11 6 elima x R A y A y R x
12 9 10 11 3bitr4ri x R A x E R -1 A
13 1 2 3 5 12 brtxpsd3 A 𝖨𝗆𝖺𝗀𝖾 R B B = R A