Step |
Hyp |
Ref |
Expression |
1 |
|
brimage.1 |
|- A e. _V |
2 |
|
brimage.2 |
|- B e. _V |
3 |
|
df-image |
|- Image R = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' R ) (x) _V ) ) ) |
4 |
|
brxp |
|- ( A ( _V X. _V ) B <-> ( A e. _V /\ B e. _V ) ) |
5 |
1 2 4
|
mpbir2an |
|- A ( _V X. _V ) B |
6 |
|
vex |
|- x e. _V |
7 |
|
vex |
|- y e. _V |
8 |
6 7
|
brcnv |
|- ( x `' R y <-> y R x ) |
9 |
8
|
rexbii |
|- ( E. y e. A x `' R y <-> E. y e. A y R x ) |
10 |
6 1
|
coep |
|- ( x ( _E o. `' R ) A <-> E. y e. A x `' R y ) |
11 |
6
|
elima |
|- ( x e. ( R " A ) <-> E. y e. A y R x ) |
12 |
9 10 11
|
3bitr4ri |
|- ( x e. ( R " A ) <-> x ( _E o. `' R ) A ) |
13 |
1 2 3 5 12
|
brtxpsd3 |
|- ( A Image R B <-> B = ( R " A ) ) |