Description: Define the image functor. This function takes a set A to a function x |-> ( A " x ) , providing that the latter exists. See imageval for the derivation. (Contributed by Scott Fenton, 27-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-image | |- Image A = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | 0 | cimage | |- Image A |
2 | cvv | |- _V |
|
3 | 2 2 | cxp | |- ( _V X. _V ) |
4 | cep | |- _E |
|
5 | 2 4 | ctxp | |- ( _V (x) _E ) |
6 | 0 | ccnv | |- `' A |
7 | 4 6 | ccom | |- ( _E o. `' A ) |
8 | 7 2 | ctxp | |- ( ( _E o. `' A ) (x) _V ) |
9 | 5 8 | csymdif | |- ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) |
10 | 9 | crn | |- ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) |
11 | 3 10 | cdif | |- ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) ) |
12 | 1 11 | wceq | |- Image A = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) ) |