Metamath Proof Explorer


Definition df-image

Description: Define the image functor. This function takes a set A to a function x |-> ( A " x ) , providing that the latter exists. See imageval for the derivation. (Contributed by Scott Fenton, 27-Mar-2014)

Ref Expression
Assertion df-image
|- Image A = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 cimage
 |-  Image A
2 cvv
 |-  _V
3 2 2 cxp
 |-  ( _V X. _V )
4 cep
 |-  _E
5 2 4 ctxp
 |-  ( _V (x) _E )
6 0 ccnv
 |-  `' A
7 4 6 ccom
 |-  ( _E o. `' A )
8 7 2 ctxp
 |-  ( ( _E o. `' A ) (x) _V )
9 5 8 csymdif
 |-  ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) )
10 9 crn
 |-  ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) )
11 3 10 cdif
 |-  ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) )
12 1 11 wceq
 |-  Image A = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) )