Step |
Hyp |
Ref |
Expression |
1 |
|
funimage |
|- Fun Image R |
2 |
|
funrel |
|- ( Fun Image R -> Rel Image R ) |
3 |
1 2
|
ax-mp |
|- Rel Image R |
4 |
|
mptrel |
|- Rel ( x e. _V |-> ( R " x ) ) |
5 |
|
vex |
|- y e. _V |
6 |
|
vex |
|- z e. _V |
7 |
5 6
|
breldm |
|- ( y Image R z -> y e. dom Image R ) |
8 |
|
fnimage |
|- Image R Fn { x | ( R " x ) e. _V } |
9 |
8
|
fndmi |
|- dom Image R = { x | ( R " x ) e. _V } |
10 |
7 9
|
eleqtrdi |
|- ( y Image R z -> y e. { x | ( R " x ) e. _V } ) |
11 |
5 6
|
breldm |
|- ( y ( x e. _V |-> ( R " x ) ) z -> y e. dom ( x e. _V |-> ( R " x ) ) ) |
12 |
|
eqid |
|- ( x e. _V |-> ( R " x ) ) = ( x e. _V |-> ( R " x ) ) |
13 |
12
|
dmmpt |
|- dom ( x e. _V |-> ( R " x ) ) = { x e. _V | ( R " x ) e. _V } |
14 |
|
rabab |
|- { x e. _V | ( R " x ) e. _V } = { x | ( R " x ) e. _V } |
15 |
13 14
|
eqtri |
|- dom ( x e. _V |-> ( R " x ) ) = { x | ( R " x ) e. _V } |
16 |
11 15
|
eleqtrdi |
|- ( y ( x e. _V |-> ( R " x ) ) z -> y e. { x | ( R " x ) e. _V } ) |
17 |
|
imaeq2 |
|- ( x = y -> ( R " x ) = ( R " y ) ) |
18 |
17
|
eleq1d |
|- ( x = y -> ( ( R " x ) e. _V <-> ( R " y ) e. _V ) ) |
19 |
5 18
|
elab |
|- ( y e. { x | ( R " x ) e. _V } <-> ( R " y ) e. _V ) |
20 |
5 6
|
brimage |
|- ( y Image R z <-> z = ( R " y ) ) |
21 |
|
eqcom |
|- ( z = ( R " y ) <-> ( R " y ) = z ) |
22 |
17 12
|
fvmptg |
|- ( ( y e. _V /\ ( R " y ) e. _V ) -> ( ( x e. _V |-> ( R " x ) ) ` y ) = ( R " y ) ) |
23 |
5 22
|
mpan |
|- ( ( R " y ) e. _V -> ( ( x e. _V |-> ( R " x ) ) ` y ) = ( R " y ) ) |
24 |
23
|
eqeq1d |
|- ( ( R " y ) e. _V -> ( ( ( x e. _V |-> ( R " x ) ) ` y ) = z <-> ( R " y ) = z ) ) |
25 |
|
funmpt |
|- Fun ( x e. _V |-> ( R " x ) ) |
26 |
|
df-fn |
|- ( ( x e. _V |-> ( R " x ) ) Fn { x | ( R " x ) e. _V } <-> ( Fun ( x e. _V |-> ( R " x ) ) /\ dom ( x e. _V |-> ( R " x ) ) = { x | ( R " x ) e. _V } ) ) |
27 |
25 15 26
|
mpbir2an |
|- ( x e. _V |-> ( R " x ) ) Fn { x | ( R " x ) e. _V } |
28 |
19
|
biimpri |
|- ( ( R " y ) e. _V -> y e. { x | ( R " x ) e. _V } ) |
29 |
|
fnbrfvb |
|- ( ( ( x e. _V |-> ( R " x ) ) Fn { x | ( R " x ) e. _V } /\ y e. { x | ( R " x ) e. _V } ) -> ( ( ( x e. _V |-> ( R " x ) ) ` y ) = z <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
30 |
27 28 29
|
sylancr |
|- ( ( R " y ) e. _V -> ( ( ( x e. _V |-> ( R " x ) ) ` y ) = z <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
31 |
24 30
|
bitr3d |
|- ( ( R " y ) e. _V -> ( ( R " y ) = z <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
32 |
21 31
|
syl5bb |
|- ( ( R " y ) e. _V -> ( z = ( R " y ) <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
33 |
20 32
|
syl5bb |
|- ( ( R " y ) e. _V -> ( y Image R z <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
34 |
19 33
|
sylbi |
|- ( y e. { x | ( R " x ) e. _V } -> ( y Image R z <-> y ( x e. _V |-> ( R " x ) ) z ) ) |
35 |
10 16 34
|
pm5.21nii |
|- ( y Image R z <-> y ( x e. _V |-> ( R " x ) ) z ) |
36 |
3 4 35
|
eqbrriv |
|- Image R = ( x e. _V |-> ( R " x ) ) |