| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funimage |  |-  Fun Image R | 
						
							| 2 |  | vex |  |-  y e. _V | 
						
							| 3 |  | vex |  |-  x e. _V | 
						
							| 4 | 2 3 | brimage |  |-  ( y Image R x <-> x = ( R " y ) ) | 
						
							| 5 |  | eqvisset |  |-  ( x = ( R " y ) -> ( R " y ) e. _V ) | 
						
							| 6 | 4 5 | sylbi |  |-  ( y Image R x -> ( R " y ) e. _V ) | 
						
							| 7 | 6 | exlimiv |  |-  ( E. x y Image R x -> ( R " y ) e. _V ) | 
						
							| 8 |  | eqid |  |-  ( R " y ) = ( R " y ) | 
						
							| 9 |  | brimageg |  |-  ( ( y e. _V /\ ( R " y ) e. _V ) -> ( y Image R ( R " y ) <-> ( R " y ) = ( R " y ) ) ) | 
						
							| 10 | 2 9 | mpan |  |-  ( ( R " y ) e. _V -> ( y Image R ( R " y ) <-> ( R " y ) = ( R " y ) ) ) | 
						
							| 11 | 8 10 | mpbiri |  |-  ( ( R " y ) e. _V -> y Image R ( R " y ) ) | 
						
							| 12 |  | breq2 |  |-  ( x = ( R " y ) -> ( y Image R x <-> y Image R ( R " y ) ) ) | 
						
							| 13 | 12 | spcegv |  |-  ( ( R " y ) e. _V -> ( y Image R ( R " y ) -> E. x y Image R x ) ) | 
						
							| 14 | 11 13 | mpd |  |-  ( ( R " y ) e. _V -> E. x y Image R x ) | 
						
							| 15 | 7 14 | impbii |  |-  ( E. x y Image R x <-> ( R " y ) e. _V ) | 
						
							| 16 | 2 | eldm |  |-  ( y e. dom Image R <-> E. x y Image R x ) | 
						
							| 17 |  | imaeq2 |  |-  ( x = y -> ( R " x ) = ( R " y ) ) | 
						
							| 18 | 17 | eleq1d |  |-  ( x = y -> ( ( R " x ) e. _V <-> ( R " y ) e. _V ) ) | 
						
							| 19 | 2 18 | elab |  |-  ( y e. { x | ( R " x ) e. _V } <-> ( R " y ) e. _V ) | 
						
							| 20 | 15 16 19 | 3bitr4i |  |-  ( y e. dom Image R <-> y e. { x | ( R " x ) e. _V } ) | 
						
							| 21 | 20 | eqriv |  |-  dom Image R = { x | ( R " x ) e. _V } | 
						
							| 22 |  | df-fn |  |-  ( Image R Fn { x | ( R " x ) e. _V } <-> ( Fun Image R /\ dom Image R = { x | ( R " x ) e. _V } ) ) | 
						
							| 23 | 1 21 22 | mpbir2an |  |-  Image R Fn { x | ( R " x ) e. _V } |