Step |
Hyp |
Ref |
Expression |
1 |
|
funimage |
|- Fun Image R |
2 |
|
vex |
|- y e. _V |
3 |
|
vex |
|- x e. _V |
4 |
2 3
|
brimage |
|- ( y Image R x <-> x = ( R " y ) ) |
5 |
|
eqvisset |
|- ( x = ( R " y ) -> ( R " y ) e. _V ) |
6 |
4 5
|
sylbi |
|- ( y Image R x -> ( R " y ) e. _V ) |
7 |
6
|
exlimiv |
|- ( E. x y Image R x -> ( R " y ) e. _V ) |
8 |
|
eqid |
|- ( R " y ) = ( R " y ) |
9 |
|
brimageg |
|- ( ( y e. _V /\ ( R " y ) e. _V ) -> ( y Image R ( R " y ) <-> ( R " y ) = ( R " y ) ) ) |
10 |
2 9
|
mpan |
|- ( ( R " y ) e. _V -> ( y Image R ( R " y ) <-> ( R " y ) = ( R " y ) ) ) |
11 |
8 10
|
mpbiri |
|- ( ( R " y ) e. _V -> y Image R ( R " y ) ) |
12 |
|
breq2 |
|- ( x = ( R " y ) -> ( y Image R x <-> y Image R ( R " y ) ) ) |
13 |
12
|
spcegv |
|- ( ( R " y ) e. _V -> ( y Image R ( R " y ) -> E. x y Image R x ) ) |
14 |
11 13
|
mpd |
|- ( ( R " y ) e. _V -> E. x y Image R x ) |
15 |
7 14
|
impbii |
|- ( E. x y Image R x <-> ( R " y ) e. _V ) |
16 |
2
|
eldm |
|- ( y e. dom Image R <-> E. x y Image R x ) |
17 |
|
imaeq2 |
|- ( x = y -> ( R " x ) = ( R " y ) ) |
18 |
17
|
eleq1d |
|- ( x = y -> ( ( R " x ) e. _V <-> ( R " y ) e. _V ) ) |
19 |
2 18
|
elab |
|- ( y e. { x | ( R " x ) e. _V } <-> ( R " y ) e. _V ) |
20 |
15 16 19
|
3bitr4i |
|- ( y e. dom Image R <-> y e. { x | ( R " x ) e. _V } ) |
21 |
20
|
eqriv |
|- dom Image R = { x | ( R " x ) e. _V } |
22 |
|
df-fn |
|- ( Image R Fn { x | ( R " x ) e. _V } <-> ( Fun Image R /\ dom Image R = { x | ( R " x ) e. _V } ) ) |
23 |
1 21 22
|
mpbir2an |
|- Image R Fn { x | ( R " x ) e. _V } |