| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funimage | ⊢ Fun  Image 𝑅 | 
						
							| 2 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 3 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 4 | 2 3 | brimage | ⊢ ( 𝑦 Image 𝑅 𝑥  ↔  𝑥  =  ( 𝑅  “  𝑦 ) ) | 
						
							| 5 |  | eqvisset | ⊢ ( 𝑥  =  ( 𝑅  “  𝑦 )  →  ( 𝑅  “  𝑦 )  ∈  V ) | 
						
							| 6 | 4 5 | sylbi | ⊢ ( 𝑦 Image 𝑅 𝑥  →  ( 𝑅  “  𝑦 )  ∈  V ) | 
						
							| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑥 𝑦 Image 𝑅 𝑥  →  ( 𝑅  “  𝑦 )  ∈  V ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑅  “  𝑦 )  =  ( 𝑅  “  𝑦 ) | 
						
							| 9 |  | brimageg | ⊢ ( ( 𝑦  ∈  V  ∧  ( 𝑅  “  𝑦 )  ∈  V )  →  ( 𝑦 Image 𝑅 ( 𝑅  “  𝑦 )  ↔  ( 𝑅  “  𝑦 )  =  ( 𝑅  “  𝑦 ) ) ) | 
						
							| 10 | 2 9 | mpan | ⊢ ( ( 𝑅  “  𝑦 )  ∈  V  →  ( 𝑦 Image 𝑅 ( 𝑅  “  𝑦 )  ↔  ( 𝑅  “  𝑦 )  =  ( 𝑅  “  𝑦 ) ) ) | 
						
							| 11 | 8 10 | mpbiri | ⊢ ( ( 𝑅  “  𝑦 )  ∈  V  →  𝑦 Image 𝑅 ( 𝑅  “  𝑦 ) ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑥  =  ( 𝑅  “  𝑦 )  →  ( 𝑦 Image 𝑅 𝑥  ↔  𝑦 Image 𝑅 ( 𝑅  “  𝑦 ) ) ) | 
						
							| 13 | 12 | spcegv | ⊢ ( ( 𝑅  “  𝑦 )  ∈  V  →  ( 𝑦 Image 𝑅 ( 𝑅  “  𝑦 )  →  ∃ 𝑥 𝑦 Image 𝑅 𝑥 ) ) | 
						
							| 14 | 11 13 | mpd | ⊢ ( ( 𝑅  “  𝑦 )  ∈  V  →  ∃ 𝑥 𝑦 Image 𝑅 𝑥 ) | 
						
							| 15 | 7 14 | impbii | ⊢ ( ∃ 𝑥 𝑦 Image 𝑅 𝑥  ↔  ( 𝑅  “  𝑦 )  ∈  V ) | 
						
							| 16 | 2 | eldm | ⊢ ( 𝑦  ∈  dom  Image 𝑅  ↔  ∃ 𝑥 𝑦 Image 𝑅 𝑥 ) | 
						
							| 17 |  | imaeq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑅  “  𝑥 )  =  ( 𝑅  “  𝑦 ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑅  “  𝑥 )  ∈  V  ↔  ( 𝑅  “  𝑦 )  ∈  V ) ) | 
						
							| 19 | 2 18 | elab | ⊢ ( 𝑦  ∈  { 𝑥  ∣  ( 𝑅  “  𝑥 )  ∈  V }  ↔  ( 𝑅  “  𝑦 )  ∈  V ) | 
						
							| 20 | 15 16 19 | 3bitr4i | ⊢ ( 𝑦  ∈  dom  Image 𝑅  ↔  𝑦  ∈  { 𝑥  ∣  ( 𝑅  “  𝑥 )  ∈  V } ) | 
						
							| 21 | 20 | eqriv | ⊢ dom  Image 𝑅  =  { 𝑥  ∣  ( 𝑅  “  𝑥 )  ∈  V } | 
						
							| 22 |  | df-fn | ⊢ ( Image 𝑅  Fn  { 𝑥  ∣  ( 𝑅  “  𝑥 )  ∈  V }  ↔  ( Fun  Image 𝑅  ∧  dom  Image 𝑅  =  { 𝑥  ∣  ( 𝑅  “  𝑥 )  ∈  V } ) ) | 
						
							| 23 | 1 21 22 | mpbir2an | ⊢ Image 𝑅  Fn  { 𝑥  ∣  ( 𝑅  “  𝑥 )  ∈  V } |