| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difss | ⊢ ( ( V  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( (  E   ∘  ◡ 𝐴 )  ⊗  V ) ) )  ⊆  ( V  ×  V ) | 
						
							| 2 |  | df-rel | ⊢ ( Rel  ( ( V  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( (  E   ∘  ◡ 𝐴 )  ⊗  V ) ) )  ↔  ( ( V  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( (  E   ∘  ◡ 𝐴 )  ⊗  V ) ) )  ⊆  ( V  ×  V ) ) | 
						
							| 3 | 1 2 | mpbir | ⊢ Rel  ( ( V  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( (  E   ∘  ◡ 𝐴 )  ⊗  V ) ) ) | 
						
							| 4 |  | df-image | ⊢ Image 𝐴  =  ( ( V  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( (  E   ∘  ◡ 𝐴 )  ⊗  V ) ) ) | 
						
							| 5 | 4 | releqi | ⊢ ( Rel  Image 𝐴  ↔  Rel  ( ( V  ×  V )  ∖  ran  ( ( V  ⊗   E  )  △  ( (  E   ∘  ◡ 𝐴 )  ⊗  V ) ) ) ) | 
						
							| 6 | 3 5 | mpbir | ⊢ Rel  Image 𝐴 | 
						
							| 7 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 8 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 9 | 7 8 | brimage | ⊢ ( 𝑥 Image 𝐴 𝑦  ↔  𝑦  =  ( 𝐴  “  𝑥 ) ) | 
						
							| 10 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 11 | 7 10 | brimage | ⊢ ( 𝑥 Image 𝐴 𝑧  ↔  𝑧  =  ( 𝐴  “  𝑥 ) ) | 
						
							| 12 |  | eqtr3 | ⊢ ( ( 𝑦  =  ( 𝐴  “  𝑥 )  ∧  𝑧  =  ( 𝐴  “  𝑥 ) )  →  𝑦  =  𝑧 ) | 
						
							| 13 | 9 11 12 | syl2anb | ⊢ ( ( 𝑥 Image 𝐴 𝑦  ∧  𝑥 Image 𝐴 𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 14 | 13 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 Image 𝐴 𝑦  ∧  𝑥 Image 𝐴 𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 15 | 14 | ax-gen | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 Image 𝐴 𝑦  ∧  𝑥 Image 𝐴 𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 16 |  | dffun2 | ⊢ ( Fun  Image 𝐴  ↔  ( Rel  Image 𝐴  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 Image 𝐴 𝑦  ∧  𝑥 Image 𝐴 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 17 | 6 15 16 | mpbir2an | ⊢ Fun  Image 𝐴 |