Metamath Proof Explorer


Theorem funimage

Description: Image A is a function. (Contributed by Scott Fenton, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion funimage ⊒Fun⁑𝖨𝗆𝖺𝗀𝖾A

Proof

Step Hyp Ref Expression
1 difss ⊒VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘A-1βŠ—VβŠ†VΓ—V
2 df-rel ⊒Rel⁑VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘A-1βŠ—V↔VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘A-1βŠ—VβŠ†VΓ—V
3 1 2 mpbir ⊒Rel⁑VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘A-1βŠ—V
4 df-image βŠ’π–¨π—†π–Ίπ—€π–ΎA=VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘A-1βŠ—V
5 4 releqi ⊒Rel⁑𝖨𝗆𝖺𝗀𝖾A↔Rel⁑VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘A-1βŠ—V
6 3 5 mpbir ⊒Rel⁑𝖨𝗆𝖺𝗀𝖾A
7 vex ⊒x∈V
8 vex ⊒y∈V
9 7 8 brimage ⊒x𝖨𝗆𝖺𝗀𝖾Ay↔y=Ax
10 vex ⊒z∈V
11 7 10 brimage ⊒x𝖨𝗆𝖺𝗀𝖾Az↔z=Ax
12 eqtr3 ⊒y=Ax∧z=Axβ†’y=z
13 9 11 12 syl2anb ⊒x𝖨𝗆𝖺𝗀𝖾Ay∧x𝖨𝗆𝖺𝗀𝖾Azβ†’y=z
14 13 gen2 βŠ’βˆ€yβˆ€zx𝖨𝗆𝖺𝗀𝖾Ay∧x𝖨𝗆𝖺𝗀𝖾Azβ†’y=z
15 14 ax-gen βŠ’βˆ€xβˆ€yβˆ€zx𝖨𝗆𝖺𝗀𝖾Ay∧x𝖨𝗆𝖺𝗀𝖾Azβ†’y=z
16 dffun2 ⊒Fun⁑𝖨𝗆𝖺𝗀𝖾A↔Rel⁑𝖨𝗆𝖺𝗀𝖾Aβˆ§βˆ€xβˆ€yβˆ€zx𝖨𝗆𝖺𝗀𝖾Ay∧x𝖨𝗆𝖺𝗀𝖾Azβ†’y=z
17 6 15 16 mpbir2an ⊒Fun⁑𝖨𝗆𝖺𝗀𝖾A