Description: Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brdomain.1 | |- A e. _V |
|
brdomain.2 | |- B e. _V |
||
Assertion | brrange | |- ( A Range B <-> B = ran A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomain.1 | |- A e. _V |
|
2 | brdomain.2 | |- B e. _V |
|
3 | 1 2 | brimage | |- ( A Image ( 2nd |` ( _V X. _V ) ) B <-> B = ( ( 2nd |` ( _V X. _V ) ) " A ) ) |
4 | df-range | |- Range = Image ( 2nd |` ( _V X. _V ) ) |
|
5 | 4 | breqi | |- ( A Range B <-> A Image ( 2nd |` ( _V X. _V ) ) B ) |
6 | dfrn5 | |- ran A = ( ( 2nd |` ( _V X. _V ) ) " A ) |
|
7 | 6 | eqeq2i | |- ( B = ran A <-> B = ( ( 2nd |` ( _V X. _V ) ) " A ) ) |
8 | 3 5 7 | 3bitr4i | |- ( A Range B <-> B = ran A ) |