Metamath Proof Explorer


Definition df-cgr3

Description: The three place congruence predicate. This is an abbreviation for saying that all three pair in a triple are congruent with each other. Three place form of Definition 4.4 of Schwabhauser p. 35. (Contributed by Scott Fenton, 4-Oct-2013)

Ref Expression
Assertion df-cgr3 Cgr3 = { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑛 ∈ ℕ ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccgr3 Cgr3
1 vp 𝑝
2 vq 𝑞
3 vn 𝑛
4 cn
5 va 𝑎
6 cee 𝔼
7 3 cv 𝑛
8 7 6 cfv ( 𝔼 ‘ 𝑛 )
9 vb 𝑏
10 vc 𝑐
11 vd 𝑑
12 ve 𝑒
13 vf 𝑓
14 1 cv 𝑝
15 5 cv 𝑎
16 9 cv 𝑏
17 10 cv 𝑐
18 16 17 cop 𝑏 , 𝑐
19 15 18 cop 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩
20 14 19 wceq 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩
21 2 cv 𝑞
22 11 cv 𝑑
23 12 cv 𝑒
24 13 cv 𝑓
25 23 24 cop 𝑒 , 𝑓
26 22 25 cop 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩
27 21 26 wceq 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩
28 15 16 cop 𝑎 , 𝑏
29 ccgr Cgr
30 22 23 cop 𝑑 , 𝑒
31 28 30 29 wbr 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒
32 15 17 cop 𝑎 , 𝑐
33 22 24 cop 𝑑 , 𝑓
34 32 33 29 wbr 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓
35 18 25 29 wbr 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓
36 31 34 35 w3a ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ )
37 20 27 36 w3a ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) )
38 37 13 8 wrex 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) )
39 38 12 8 wrex 𝑒 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) )
40 39 11 8 wrex 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) )
41 40 10 8 wrex 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) )
42 41 9 8 wrex 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) )
43 42 5 8 wrex 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) )
44 43 3 4 wrex 𝑛 ∈ ℕ ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) )
45 44 1 2 copab { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑛 ∈ ℕ ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) ) }
46 0 45 wceq Cgr3 = { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑛 ∈ ℕ ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑑 , 𝑒 ⟩ ∧ ⟨ 𝑎 , 𝑐 ⟩ Cgr ⟨ 𝑑 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) ) }