| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccmn |
⊢ CMnd |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cmnd |
⊢ Mnd |
| 3 |
|
va |
⊢ 𝑎 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑔 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 7 |
|
vb |
⊢ 𝑏 |
| 8 |
3
|
cv |
⊢ 𝑎 |
| 9 |
|
cplusg |
⊢ +g |
| 10 |
5 9
|
cfv |
⊢ ( +g ‘ 𝑔 ) |
| 11 |
7
|
cv |
⊢ 𝑏 |
| 12 |
8 11 10
|
co |
⊢ ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) |
| 13 |
11 8 10
|
co |
⊢ ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
| 14 |
12 13
|
wceq |
⊢ ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
| 15 |
14 7 6
|
wral |
⊢ ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
| 16 |
15 3 6
|
wral |
⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
| 17 |
16 1 2
|
crab |
⊢ { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) } |
| 18 |
0 17
|
wceq |
⊢ CMnd = { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) } |