| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccmn |
|- CMnd |
| 1 |
|
vg |
|- g |
| 2 |
|
cmnd |
|- Mnd |
| 3 |
|
va |
|- a |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- g |
| 6 |
5 4
|
cfv |
|- ( Base ` g ) |
| 7 |
|
vb |
|- b |
| 8 |
3
|
cv |
|- a |
| 9 |
|
cplusg |
|- +g |
| 10 |
5 9
|
cfv |
|- ( +g ` g ) |
| 11 |
7
|
cv |
|- b |
| 12 |
8 11 10
|
co |
|- ( a ( +g ` g ) b ) |
| 13 |
11 8 10
|
co |
|- ( b ( +g ` g ) a ) |
| 14 |
12 13
|
wceq |
|- ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) |
| 15 |
14 7 6
|
wral |
|- A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) |
| 16 |
15 3 6
|
wral |
|- A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) |
| 17 |
16 1 2
|
crab |
|- { g e. Mnd | A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) } |
| 18 |
0 17
|
wceq |
|- CMnd = { g e. Mnd | A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) } |