Metamath Proof Explorer


Definition df-cref

Description: Define a statement "every open cover has an A refinement" , where A is a property for refinements like "finite", "countable", "point finite" or "locally finite". (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion df-cref CovHasRef 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 0 ccref CovHasRef 𝐴
2 vj 𝑗
3 ctop Top
4 vy 𝑦
5 2 cv 𝑗
6 5 cpw 𝒫 𝑗
7 5 cuni 𝑗
8 4 cv 𝑦
9 8 cuni 𝑦
10 7 9 wceq 𝑗 = 𝑦
11 vz 𝑧
12 6 0 cin ( 𝒫 𝑗𝐴 )
13 11 cv 𝑧
14 cref Ref
15 13 8 14 wbr 𝑧 Ref 𝑦
16 15 11 12 wrex 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦
17 10 16 wi ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 )
18 17 4 6 wral 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 )
19 18 2 3 crab { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) }
20 1 19 wceq CovHasRef 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) }