Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Topology
Open cover refinement property
df-cref
Metamath Proof Explorer
Description: Define a statement "every open cover has an A refinement" , where
A is a property for refinements like "finite", "countable", "point
finite" or "locally finite". (Contributed by Thierry Arnoux , 7-Jan-2020)
Ref
Expression
Assertion
df-cref
⊢ CovHasRef 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
⊢ 𝐴
1
0
ccref
⊢ CovHasRef 𝐴
2
vj
⊢ 𝑗
3
ctop
⊢ Top
4
vy
⊢ 𝑦
5
2
cv
⊢ 𝑗
6
5
cpw
⊢ 𝒫 𝑗
7
5
cuni
⊢ ∪ 𝑗
8
4
cv
⊢ 𝑦
9
8
cuni
⊢ ∪ 𝑦
10
7 9
wceq
⊢ ∪ 𝑗 = ∪ 𝑦
11
vz
⊢ 𝑧
12
6 0
cin
⊢ ( 𝒫 𝑗 ∩ 𝐴 )
13
11
cv
⊢ 𝑧
14
cref
⊢ Ref
15
13 8 14
wbr
⊢ 𝑧 Ref 𝑦
16
15 11 12
wrex
⊢ ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦
17
10 16
wi
⊢ ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 )
18
17 4 6
wral
⊢ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 )
19
18 2 3
crab
⊢ { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) }
20
1 19
wceq
⊢ CovHasRef 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) }