Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Topology
Open cover refinement property
df-cref
Metamath Proof Explorer
Description: Define a statement "every open cover has an A refinement" , where
A is a property for refinements like "finite", "countable", "point
finite" or "locally finite". (Contributed by Thierry Arnoux , 7-Jan-2020)
Ref
Expression
Assertion
df-cref
|- CovHasRef A = { j e. Top | A. y e. ~P j ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
|- A
1
0
ccref
|- CovHasRef A
2
vj
|- j
3
ctop
|- Top
4
vy
|- y
5
2
cv
|- j
6
5
cpw
|- ~P j
7
5
cuni
|- U. j
8
4
cv
|- y
9
8
cuni
|- U. y
10
7 9
wceq
|- U. j = U. y
11
vz
|- z
12
6 0
cin
|- ( ~P j i^i A )
13
11
cv
|- z
14
cref
|- Ref
15
13 8 14
wbr
|- z Ref y
16
15 11 12
wrex
|- E. z e. ( ~P j i^i A ) z Ref y
17
10 16
wi
|- ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y )
18
17 4 6
wral
|- A. y e. ~P j ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y )
19
18 2 3
crab
|- { j e. Top | A. y e. ~P j ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y ) }
20
1 19
wceq
|- CovHasRef A = { j e. Top | A. y e. ~P j ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y ) }