Metamath Proof Explorer


Definition df-cref

Description: Define a statement "every open cover has an A refinement" , where A is a property for refinements like "finite", "countable", "point finite" or "locally finite". (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion df-cref
|- CovHasRef A = { j e. Top | A. y e. ~P j ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 ccref
 |-  CovHasRef A
2 vj
 |-  j
3 ctop
 |-  Top
4 vy
 |-  y
5 2 cv
 |-  j
6 5 cpw
 |-  ~P j
7 5 cuni
 |-  U. j
8 4 cv
 |-  y
9 8 cuni
 |-  U. y
10 7 9 wceq
 |-  U. j = U. y
11 vz
 |-  z
12 6 0 cin
 |-  ( ~P j i^i A )
13 11 cv
 |-  z
14 cref
 |-  Ref
15 13 8 14 wbr
 |-  z Ref y
16 15 11 12 wrex
 |-  E. z e. ( ~P j i^i A ) z Ref y
17 10 16 wi
 |-  ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y )
18 17 4 6 wral
 |-  A. y e. ~P j ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y )
19 18 2 3 crab
 |-  { j e. Top | A. y e. ~P j ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y ) }
20 1 19 wceq
 |-  CovHasRef A = { j e. Top | A. y e. ~P j ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y ) }