Metamath Proof Explorer


Theorem iscref

Description: The property that every open cover has an A refinement for the topological space J . (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Hypothesis iscref.x
|- X = U. J
Assertion iscref
|- ( J e. CovHasRef A <-> ( J e. Top /\ A. y e. ~P J ( X = U. y -> E. z e. ( ~P J i^i A ) z Ref y ) ) )

Proof

Step Hyp Ref Expression
1 iscref.x
 |-  X = U. J
2 pweq
 |-  ( j = J -> ~P j = ~P J )
3 unieq
 |-  ( j = J -> U. j = U. J )
4 3 1 eqtr4di
 |-  ( j = J -> U. j = X )
5 4 eqeq1d
 |-  ( j = J -> ( U. j = U. y <-> X = U. y ) )
6 2 ineq1d
 |-  ( j = J -> ( ~P j i^i A ) = ( ~P J i^i A ) )
7 6 rexeqdv
 |-  ( j = J -> ( E. z e. ( ~P j i^i A ) z Ref y <-> E. z e. ( ~P J i^i A ) z Ref y ) )
8 5 7 imbi12d
 |-  ( j = J -> ( ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y ) <-> ( X = U. y -> E. z e. ( ~P J i^i A ) z Ref y ) ) )
9 2 8 raleqbidv
 |-  ( j = J -> ( A. y e. ~P j ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y ) <-> A. y e. ~P J ( X = U. y -> E. z e. ( ~P J i^i A ) z Ref y ) ) )
10 df-cref
 |-  CovHasRef A = { j e. Top | A. y e. ~P j ( U. j = U. y -> E. z e. ( ~P j i^i A ) z Ref y ) }
11 9 10 elrab2
 |-  ( J e. CovHasRef A <-> ( J e. Top /\ A. y e. ~P J ( X = U. y -> E. z e. ( ~P J i^i A ) z Ref y ) ) )