Step |
Hyp |
Ref |
Expression |
0 |
|
ccvm |
⊢ CovMap |
1 |
|
vc |
⊢ 𝑐 |
2 |
|
ctop |
⊢ Top |
3 |
|
vj |
⊢ 𝑗 |
4 |
|
vf |
⊢ 𝑓 |
5 |
1
|
cv |
⊢ 𝑐 |
6 |
|
ccn |
⊢ Cn |
7 |
3
|
cv |
⊢ 𝑗 |
8 |
5 7 6
|
co |
⊢ ( 𝑐 Cn 𝑗 ) |
9 |
|
vx |
⊢ 𝑥 |
10 |
7
|
cuni |
⊢ ∪ 𝑗 |
11 |
|
vk |
⊢ 𝑘 |
12 |
9
|
cv |
⊢ 𝑥 |
13 |
11
|
cv |
⊢ 𝑘 |
14 |
12 13
|
wcel |
⊢ 𝑥 ∈ 𝑘 |
15 |
|
vs |
⊢ 𝑠 |
16 |
5
|
cpw |
⊢ 𝒫 𝑐 |
17 |
|
c0 |
⊢ ∅ |
18 |
17
|
csn |
⊢ { ∅ } |
19 |
16 18
|
cdif |
⊢ ( 𝒫 𝑐 ∖ { ∅ } ) |
20 |
15
|
cv |
⊢ 𝑠 |
21 |
20
|
cuni |
⊢ ∪ 𝑠 |
22 |
4
|
cv |
⊢ 𝑓 |
23 |
22
|
ccnv |
⊢ ◡ 𝑓 |
24 |
23 13
|
cima |
⊢ ( ◡ 𝑓 “ 𝑘 ) |
25 |
21 24
|
wceq |
⊢ ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) |
26 |
|
vu |
⊢ 𝑢 |
27 |
|
vv |
⊢ 𝑣 |
28 |
26
|
cv |
⊢ 𝑢 |
29 |
28
|
csn |
⊢ { 𝑢 } |
30 |
20 29
|
cdif |
⊢ ( 𝑠 ∖ { 𝑢 } ) |
31 |
27
|
cv |
⊢ 𝑣 |
32 |
28 31
|
cin |
⊢ ( 𝑢 ∩ 𝑣 ) |
33 |
32 17
|
wceq |
⊢ ( 𝑢 ∩ 𝑣 ) = ∅ |
34 |
33 27 30
|
wral |
⊢ ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ |
35 |
22 28
|
cres |
⊢ ( 𝑓 ↾ 𝑢 ) |
36 |
|
crest |
⊢ ↾t |
37 |
5 28 36
|
co |
⊢ ( 𝑐 ↾t 𝑢 ) |
38 |
|
chmeo |
⊢ Homeo |
39 |
7 13 36
|
co |
⊢ ( 𝑗 ↾t 𝑘 ) |
40 |
37 39 38
|
co |
⊢ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) |
41 |
35 40
|
wcel |
⊢ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) |
42 |
34 41
|
wa |
⊢ ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) |
43 |
42 26 20
|
wral |
⊢ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) |
44 |
25 43
|
wa |
⊢ ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) |
45 |
44 15 19
|
wrex |
⊢ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) |
46 |
14 45
|
wa |
⊢ ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) |
47 |
46 11 7
|
wrex |
⊢ ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) |
48 |
47 9 10
|
wral |
⊢ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) |
49 |
48 4 8
|
crab |
⊢ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) } |
50 |
1 3 2 2 49
|
cmpo |
⊢ ( 𝑐 ∈ Top , 𝑗 ∈ Top ↦ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) } ) |
51 |
0 50
|
wceq |
⊢ CovMap = ( 𝑐 ∈ Top , 𝑗 ∈ Top ↦ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) } ) |