| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccvm |
⊢ CovMap |
| 1 |
|
vc |
⊢ 𝑐 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vj |
⊢ 𝑗 |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
1
|
cv |
⊢ 𝑐 |
| 6 |
|
ccn |
⊢ Cn |
| 7 |
3
|
cv |
⊢ 𝑗 |
| 8 |
5 7 6
|
co |
⊢ ( 𝑐 Cn 𝑗 ) |
| 9 |
|
vx |
⊢ 𝑥 |
| 10 |
7
|
cuni |
⊢ ∪ 𝑗 |
| 11 |
|
vk |
⊢ 𝑘 |
| 12 |
9
|
cv |
⊢ 𝑥 |
| 13 |
11
|
cv |
⊢ 𝑘 |
| 14 |
12 13
|
wcel |
⊢ 𝑥 ∈ 𝑘 |
| 15 |
|
vs |
⊢ 𝑠 |
| 16 |
5
|
cpw |
⊢ 𝒫 𝑐 |
| 17 |
|
c0 |
⊢ ∅ |
| 18 |
17
|
csn |
⊢ { ∅ } |
| 19 |
16 18
|
cdif |
⊢ ( 𝒫 𝑐 ∖ { ∅ } ) |
| 20 |
15
|
cv |
⊢ 𝑠 |
| 21 |
20
|
cuni |
⊢ ∪ 𝑠 |
| 22 |
4
|
cv |
⊢ 𝑓 |
| 23 |
22
|
ccnv |
⊢ ◡ 𝑓 |
| 24 |
23 13
|
cima |
⊢ ( ◡ 𝑓 “ 𝑘 ) |
| 25 |
21 24
|
wceq |
⊢ ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) |
| 26 |
|
vu |
⊢ 𝑢 |
| 27 |
|
vv |
⊢ 𝑣 |
| 28 |
26
|
cv |
⊢ 𝑢 |
| 29 |
28
|
csn |
⊢ { 𝑢 } |
| 30 |
20 29
|
cdif |
⊢ ( 𝑠 ∖ { 𝑢 } ) |
| 31 |
27
|
cv |
⊢ 𝑣 |
| 32 |
28 31
|
cin |
⊢ ( 𝑢 ∩ 𝑣 ) |
| 33 |
32 17
|
wceq |
⊢ ( 𝑢 ∩ 𝑣 ) = ∅ |
| 34 |
33 27 30
|
wral |
⊢ ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ |
| 35 |
22 28
|
cres |
⊢ ( 𝑓 ↾ 𝑢 ) |
| 36 |
|
crest |
⊢ ↾t |
| 37 |
5 28 36
|
co |
⊢ ( 𝑐 ↾t 𝑢 ) |
| 38 |
|
chmeo |
⊢ Homeo |
| 39 |
7 13 36
|
co |
⊢ ( 𝑗 ↾t 𝑘 ) |
| 40 |
37 39 38
|
co |
⊢ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) |
| 41 |
35 40
|
wcel |
⊢ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) |
| 42 |
34 41
|
wa |
⊢ ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) |
| 43 |
42 26 20
|
wral |
⊢ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) |
| 44 |
25 43
|
wa |
⊢ ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) |
| 45 |
44 15 19
|
wrex |
⊢ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) |
| 46 |
14 45
|
wa |
⊢ ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) |
| 47 |
46 11 7
|
wrex |
⊢ ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) |
| 48 |
47 9 10
|
wral |
⊢ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) |
| 49 |
48 4 8
|
crab |
⊢ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) } |
| 50 |
1 3 2 2 49
|
cmpo |
⊢ ( 𝑐 ∈ Top , 𝑗 ∈ Top ↦ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) } ) |
| 51 |
0 50
|
wceq |
⊢ CovMap = ( 𝑐 ∈ Top , 𝑗 ∈ Top ↦ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) } ) |