Metamath Proof Explorer


Definition df-cvm

Description: Define the class of covering maps on two topological spaces. A function f : c --> j is a covering map if it is continuous and for every point x in the target space there is a neighborhood k of x and a decomposition s of the preimage of k as a disjoint union such that f is a homeomorphism of each set u e. s onto k . (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Assertion df-cvm CovMap = ( 𝑐 ∈ Top , 𝑗 ∈ Top ↦ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 𝑗𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccvm CovMap
1 vc 𝑐
2 ctop Top
3 vj 𝑗
4 vf 𝑓
5 1 cv 𝑐
6 ccn Cn
7 3 cv 𝑗
8 5 7 6 co ( 𝑐 Cn 𝑗 )
9 vx 𝑥
10 7 cuni 𝑗
11 vk 𝑘
12 9 cv 𝑥
13 11 cv 𝑘
14 12 13 wcel 𝑥𝑘
15 vs 𝑠
16 5 cpw 𝒫 𝑐
17 c0
18 17 csn { ∅ }
19 16 18 cdif ( 𝒫 𝑐 ∖ { ∅ } )
20 15 cv 𝑠
21 20 cuni 𝑠
22 4 cv 𝑓
23 22 ccnv 𝑓
24 23 13 cima ( 𝑓𝑘 )
25 21 24 wceq 𝑠 = ( 𝑓𝑘 )
26 vu 𝑢
27 vv 𝑣
28 26 cv 𝑢
29 28 csn { 𝑢 }
30 20 29 cdif ( 𝑠 ∖ { 𝑢 } )
31 27 cv 𝑣
32 28 31 cin ( 𝑢𝑣 )
33 32 17 wceq ( 𝑢𝑣 ) = ∅
34 33 27 30 wral 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅
35 22 28 cres ( 𝑓𝑢 )
36 crest t
37 5 28 36 co ( 𝑐t 𝑢 )
38 chmeo Homeo
39 7 13 36 co ( 𝑗t 𝑘 )
40 37 39 38 co ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) )
41 35 40 wcel ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) )
42 34 41 wa ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) )
43 42 26 20 wral 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) )
44 25 43 wa ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) )
45 44 15 19 wrex 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) )
46 14 45 wa ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) )
47 46 11 7 wrex 𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) )
48 47 9 10 wral 𝑥 𝑗𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) )
49 48 4 8 crab { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 𝑗𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) }
50 1 3 2 2 49 cmpo ( 𝑐 ∈ Top , 𝑗 ∈ Top ↦ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 𝑗𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) } )
51 0 50 wceq CovMap = ( 𝑐 ∈ Top , 𝑗 ∈ Top ↦ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 𝑗𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) } )