| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccvm | ⊢  CovMap | 
						
							| 1 |  | vc | ⊢ 𝑐 | 
						
							| 2 |  | ctop | ⊢ Top | 
						
							| 3 |  | vj | ⊢ 𝑗 | 
						
							| 4 |  | vf | ⊢ 𝑓 | 
						
							| 5 | 1 | cv | ⊢ 𝑐 | 
						
							| 6 |  | ccn | ⊢  Cn | 
						
							| 7 | 3 | cv | ⊢ 𝑗 | 
						
							| 8 | 5 7 6 | co | ⊢ ( 𝑐  Cn  𝑗 ) | 
						
							| 9 |  | vx | ⊢ 𝑥 | 
						
							| 10 | 7 | cuni | ⊢ ∪  𝑗 | 
						
							| 11 |  | vk | ⊢ 𝑘 | 
						
							| 12 | 9 | cv | ⊢ 𝑥 | 
						
							| 13 | 11 | cv | ⊢ 𝑘 | 
						
							| 14 | 12 13 | wcel | ⊢ 𝑥  ∈  𝑘 | 
						
							| 15 |  | vs | ⊢ 𝑠 | 
						
							| 16 | 5 | cpw | ⊢ 𝒫  𝑐 | 
						
							| 17 |  | c0 | ⊢ ∅ | 
						
							| 18 | 17 | csn | ⊢ { ∅ } | 
						
							| 19 | 16 18 | cdif | ⊢ ( 𝒫  𝑐  ∖  { ∅ } ) | 
						
							| 20 | 15 | cv | ⊢ 𝑠 | 
						
							| 21 | 20 | cuni | ⊢ ∪  𝑠 | 
						
							| 22 | 4 | cv | ⊢ 𝑓 | 
						
							| 23 | 22 | ccnv | ⊢ ◡ 𝑓 | 
						
							| 24 | 23 13 | cima | ⊢ ( ◡ 𝑓  “  𝑘 ) | 
						
							| 25 | 21 24 | wceq | ⊢ ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 ) | 
						
							| 26 |  | vu | ⊢ 𝑢 | 
						
							| 27 |  | vv | ⊢ 𝑣 | 
						
							| 28 | 26 | cv | ⊢ 𝑢 | 
						
							| 29 | 28 | csn | ⊢ { 𝑢 } | 
						
							| 30 | 20 29 | cdif | ⊢ ( 𝑠  ∖  { 𝑢 } ) | 
						
							| 31 | 27 | cv | ⊢ 𝑣 | 
						
							| 32 | 28 31 | cin | ⊢ ( 𝑢  ∩  𝑣 ) | 
						
							| 33 | 32 17 | wceq | ⊢ ( 𝑢  ∩  𝑣 )  =  ∅ | 
						
							| 34 | 33 27 30 | wral | ⊢ ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅ | 
						
							| 35 | 22 28 | cres | ⊢ ( 𝑓  ↾  𝑢 ) | 
						
							| 36 |  | crest | ⊢  ↾t | 
						
							| 37 | 5 28 36 | co | ⊢ ( 𝑐  ↾t  𝑢 ) | 
						
							| 38 |  | chmeo | ⊢ Homeo | 
						
							| 39 | 7 13 36 | co | ⊢ ( 𝑗  ↾t  𝑘 ) | 
						
							| 40 | 37 39 38 | co | ⊢ ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) | 
						
							| 41 | 35 40 | wcel | ⊢ ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) | 
						
							| 42 | 34 41 | wa | ⊢ ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) | 
						
							| 43 | 42 26 20 | wral | ⊢ ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) | 
						
							| 44 | 25 43 | wa | ⊢ ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) | 
						
							| 45 | 44 15 19 | wrex | ⊢ ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) | 
						
							| 46 | 14 45 | wa | ⊢ ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) ) | 
						
							| 47 | 46 11 7 | wrex | ⊢ ∃ 𝑘  ∈  𝑗 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) ) | 
						
							| 48 | 47 9 10 | wral | ⊢ ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑘  ∈  𝑗 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) ) | 
						
							| 49 | 48 4 8 | crab | ⊢ { 𝑓  ∈  ( 𝑐  Cn  𝑗 )  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑘  ∈  𝑗 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) ) } | 
						
							| 50 | 1 3 2 2 49 | cmpo | ⊢ ( 𝑐  ∈  Top ,  𝑗  ∈  Top  ↦  { 𝑓  ∈  ( 𝑐  Cn  𝑗 )  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑘  ∈  𝑗 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) ) } ) | 
						
							| 51 | 0 50 | wceq | ⊢  CovMap   =  ( 𝑐  ∈  Top ,  𝑗  ∈  Top  ↦  { 𝑓  ∈  ( 𝑐  Cn  𝑗 )  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑘  ∈  𝑗 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) ) } ) |