Metamath Proof Explorer


Theorem fncvm

Description: Lemma for covering maps. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Assertion fncvm CovMap Fn ( Top × Top )

Proof

Step Hyp Ref Expression
1 df-cvm CovMap = ( 𝑐 ∈ Top , 𝑗 ∈ Top ↦ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 𝑗𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) } )
2 ovex ( 𝑐 Cn 𝑗 ) ∈ V
3 2 rabex { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 𝑗𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) } ∈ V
4 1 3 fnmpoi CovMap Fn ( Top × Top )