| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscvm.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | unieq | ⊢ ( 𝑠  =  𝑏  →  ∪  𝑠  =  ∪  𝑏 ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( 𝑠  =  𝑏  →  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ↔  ∪  𝑏  =  ( ◡ 𝐹  “  𝑘 ) ) ) | 
						
							| 4 |  | ineq2 | ⊢ ( 𝑣  =  𝑑  →  ( 𝑢  ∩  𝑣 )  =  ( 𝑢  ∩  𝑑 ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( 𝑣  =  𝑑  →  ( ( 𝑢  ∩  𝑣 )  =  ∅  ↔  ( 𝑢  ∩  𝑑 )  =  ∅ ) ) | 
						
							| 6 | 5 | cbvralvw | ⊢ ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ↔  ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑑 )  =  ∅ ) | 
						
							| 7 |  | sneq | ⊢ ( 𝑢  =  𝑐  →  { 𝑢 }  =  { 𝑐 } ) | 
						
							| 8 | 7 | difeq2d | ⊢ ( 𝑢  =  𝑐  →  ( 𝑠  ∖  { 𝑢 } )  =  ( 𝑠  ∖  { 𝑐 } ) ) | 
						
							| 9 |  | ineq1 | ⊢ ( 𝑢  =  𝑐  →  ( 𝑢  ∩  𝑑 )  =  ( 𝑐  ∩  𝑑 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑢  =  𝑐  →  ( ( 𝑢  ∩  𝑑 )  =  ∅  ↔  ( 𝑐  ∩  𝑑 )  =  ∅ ) ) | 
						
							| 11 | 8 10 | raleqbidv | ⊢ ( 𝑢  =  𝑐  →  ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑑 )  =  ∅  ↔  ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅ ) ) | 
						
							| 12 | 6 11 | bitrid | ⊢ ( 𝑢  =  𝑐  →  ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ↔  ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅ ) ) | 
						
							| 13 |  | reseq2 | ⊢ ( 𝑢  =  𝑐  →  ( 𝐹  ↾  𝑢 )  =  ( 𝐹  ↾  𝑐 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑢  =  𝑐  →  ( 𝐶  ↾t  𝑢 )  =  ( 𝐶  ↾t  𝑐 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑢  =  𝑐  →  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) )  =  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) | 
						
							| 16 | 13 15 | eleq12d | ⊢ ( 𝑢  =  𝑐  →  ( ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) )  ↔  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) | 
						
							| 17 | 12 16 | anbi12d | ⊢ ( 𝑢  =  𝑐  →  ( ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) | 
						
							| 18 | 17 | cbvralvw | ⊢ ( ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) | 
						
							| 19 |  | difeq1 | ⊢ ( 𝑠  =  𝑏  →  ( 𝑠  ∖  { 𝑐 } )  =  ( 𝑏  ∖  { 𝑐 } ) ) | 
						
							| 20 | 19 | raleqdv | ⊢ ( 𝑠  =  𝑏  →  ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ↔  ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅ ) ) | 
						
							| 21 | 20 | anbi1d | ⊢ ( 𝑠  =  𝑏  →  ( ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) | 
						
							| 22 | 21 | raleqbi1dv | ⊢ ( 𝑠  =  𝑏  →  ( ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) | 
						
							| 23 | 18 22 | bitrid | ⊢ ( 𝑠  =  𝑏  →  ( ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) | 
						
							| 24 | 3 23 | anbi12d | ⊢ ( 𝑠  =  𝑏  →  ( ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) )  ↔  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) | 
						
							| 25 | 24 | cbvrabv | ⊢ { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) }  =  { 𝑏  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } | 
						
							| 26 |  | imaeq2 | ⊢ ( 𝑘  =  𝑎  →  ( ◡ 𝐹  “  𝑘 )  =  ( ◡ 𝐹  “  𝑎 ) ) | 
						
							| 27 | 26 | eqeq2d | ⊢ ( 𝑘  =  𝑎  →  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑘 )  ↔  ∪  𝑏  =  ( ◡ 𝐹  “  𝑎 ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑘  =  𝑎  →  ( 𝐽  ↾t  𝑘 )  =  ( 𝐽  ↾t  𝑎 ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( 𝑘  =  𝑎  →  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) )  =  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) | 
						
							| 30 | 29 | eleq2d | ⊢ ( 𝑘  =  𝑎  →  ( ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) )  ↔  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) | 
						
							| 31 | 30 | anbi2d | ⊢ ( 𝑘  =  𝑎  →  ( ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) ) | 
						
							| 32 | 31 | ralbidv | ⊢ ( 𝑘  =  𝑎  →  ( ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) ) | 
						
							| 33 | 27 32 | anbi12d | ⊢ ( 𝑘  =  𝑎  →  ( ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) )  ↔  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑎 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) ) ) | 
						
							| 34 | 33 | rabbidv | ⊢ ( 𝑘  =  𝑎  →  { 𝑏  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) }  =  { 𝑏  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑎 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) } ) | 
						
							| 35 | 25 34 | eqtrid | ⊢ ( 𝑘  =  𝑎  →  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) }  =  { 𝑏  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑎 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) } ) | 
						
							| 36 | 35 | cbvmptv | ⊢ ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } )  =  ( 𝑎  ∈  𝐽  ↦  { 𝑏  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑎 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) } ) | 
						
							| 37 | 1 36 | eqtri | ⊢ 𝑆  =  ( 𝑎  ∈  𝐽  ↦  { 𝑏  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑎 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) } ) |