| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscvm.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | iscvm.2 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 3 |  | anass | ⊢ ( ( ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  ∧  𝐹  ∈  ( 𝐶  Cn  𝐽 ) )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ ) )  ↔  ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  ∧  ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ ) ) ) ) | 
						
							| 4 |  | df-3an | ⊢ ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top  ∧  𝐹  ∈  ( 𝐶  Cn  𝐽 ) )  ↔  ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  ∧  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top  ∧  𝐹  ∈  ( 𝐶  Cn  𝐽 ) )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ ) )  ↔  ( ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  ∧  𝐹  ∈  ( 𝐶  Cn  𝐽 ) )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ ) ) ) | 
						
							| 6 |  | df-cvm | ⊢  CovMap   =  ( 𝑐  ∈  Top ,  𝑗  ∈  Top  ↦  { 𝑓  ∈  ( 𝑐  Cn  𝑗 )  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑘  ∈  𝑗 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) ) } ) | 
						
							| 7 | 6 | elmpocl | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top ) ) | 
						
							| 8 |  | oveq12 | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( 𝑐  Cn  𝑗 )  =  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  𝑗  =  𝐽 ) | 
						
							| 10 | 9 | unieqd | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ∪  𝑗  =  ∪  𝐽 ) | 
						
							| 11 | 10 2 | eqtr4di | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ∪  𝑗  =  𝑋 ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  𝑐  =  𝐶 ) | 
						
							| 13 | 12 | pweqd | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  𝒫  𝑐  =  𝒫  𝐶 ) | 
						
							| 14 | 13 | difeq1d | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( 𝒫  𝑐  ∖  { ∅ } )  =  ( 𝒫  𝐶  ∖  { ∅ } ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑐  =  𝐶  →  ( 𝑐  ↾t  𝑢 )  =  ( 𝐶  ↾t  𝑢 ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑗  =  𝐽  →  ( 𝑗  ↾t  𝑘 )  =  ( 𝐽  ↾t  𝑘 ) ) | 
						
							| 17 | 15 16 | oveqan12d | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) )  =  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) | 
						
							| 18 | 17 | eleq2d | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) )  ↔  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) )  ↔  ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) | 
						
							| 20 | 19 | ralbidv | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) )  ↔  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) )  ↔  ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) | 
						
							| 22 | 14 21 | rexeqbidv | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) )  ↔  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) | 
						
							| 23 | 22 | anbi2d | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) )  ↔  ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) | 
						
							| 24 | 9 23 | rexeqbidv | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( ∃ 𝑘  ∈  𝑗 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) )  ↔  ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) | 
						
							| 25 | 11 24 | raleqbidv | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  ( ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑘  ∈  𝑗 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) )  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) | 
						
							| 26 | 8 25 | rabeqbidv | ⊢ ( ( 𝑐  =  𝐶  ∧  𝑗  =  𝐽 )  →  { 𝑓  ∈  ( 𝑐  Cn  𝑗 )  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑘  ∈  𝑗 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝑐  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝑐  ↾t  𝑢 ) Homeo ( 𝑗  ↾t  𝑘 ) ) ) ) ) }  =  { 𝑓  ∈  ( 𝐶  Cn  𝐽 )  ∣  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) } ) | 
						
							| 27 |  | ovex | ⊢ ( 𝐶  Cn  𝐽 )  ∈  V | 
						
							| 28 | 27 | rabex | ⊢ { 𝑓  ∈  ( 𝐶  Cn  𝐽 )  ∣  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) }  ∈  V | 
						
							| 29 | 26 6 28 | ovmpoa | ⊢ ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  →  ( 𝐶  CovMap  𝐽 )  =  { 𝑓  ∈  ( 𝐶  Cn  𝐽 )  ∣  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) } ) | 
						
							| 30 | 29 | eleq2d | ⊢ ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  →  ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ↔  𝐹  ∈  { 𝑓  ∈  ( 𝐶  Cn  𝐽 )  ∣  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) } ) ) | 
						
							| 31 |  | id | ⊢ ( 𝑘  ∈  𝐽  →  𝑘  ∈  𝐽 ) | 
						
							| 32 |  | pwexg | ⊢ ( 𝐶  ∈  Top  →  𝒫  𝐶  ∈  V ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  →  𝒫  𝐶  ∈  V ) | 
						
							| 34 |  | difexg | ⊢ ( 𝒫  𝐶  ∈  V  →  ( 𝒫  𝐶  ∖  { ∅ } )  ∈  V ) | 
						
							| 35 |  | rabexg | ⊢ ( ( 𝒫  𝐶  ∖  { ∅ } )  ∈  V  →  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) }  ∈  V ) | 
						
							| 36 | 33 34 35 | 3syl | ⊢ ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  →  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) }  ∈  V ) | 
						
							| 37 | 1 | fvmpt2 | ⊢ ( ( 𝑘  ∈  𝐽  ∧  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) }  ∈  V )  →  ( 𝑆 ‘ 𝑘 )  =  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 38 | 31 36 37 | syl2anr | ⊢ ( ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  ∧  𝑘  ∈  𝐽 )  →  ( 𝑆 ‘ 𝑘 )  =  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 39 | 38 | neeq1d | ⊢ ( ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  ∧  𝑘  ∈  𝐽 )  →  ( ( 𝑆 ‘ 𝑘 )  ≠  ∅  ↔  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) }  ≠  ∅ ) ) | 
						
							| 40 |  | rabn0 | ⊢ ( { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) }  ≠  ∅  ↔  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) | 
						
							| 41 | 39 40 | bitrdi | ⊢ ( ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  ∧  𝑘  ∈  𝐽 )  →  ( ( 𝑆 ‘ 𝑘 )  ≠  ∅  ↔  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) | 
						
							| 42 | 41 | anbi2d | ⊢ ( ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  ∧  𝑘  ∈  𝐽 )  →  ( ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ )  ↔  ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) | 
						
							| 43 | 42 | rexbidva | ⊢ ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  →  ( ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ )  ↔  ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) | 
						
							| 44 | 43 | ralbidv | ⊢ ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  →  ( ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ )  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) | 
						
							| 45 | 44 | anbi2d | ⊢ ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  →  ( ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ ) )  ↔  ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) ) | 
						
							| 46 |  | cnveq | ⊢ ( 𝑓  =  𝐹  →  ◡ 𝑓  =  ◡ 𝐹 ) | 
						
							| 47 | 46 | imaeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ◡ 𝑓  “  𝑘 )  =  ( ◡ 𝐹  “  𝑘 ) ) | 
						
							| 48 | 47 | eqeq2d | ⊢ ( 𝑓  =  𝐹  →  ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ↔  ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 ) ) ) | 
						
							| 49 |  | reseq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ↾  𝑢 )  =  ( 𝐹  ↾  𝑢 ) ) | 
						
							| 50 | 49 | eleq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) )  ↔  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) | 
						
							| 51 | 50 | anbi2d | ⊢ ( 𝑓  =  𝐹  →  ( ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) | 
						
							| 52 | 51 | ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) | 
						
							| 53 | 48 52 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) )  ↔  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) | 
						
							| 54 | 53 | rexbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) )  ↔  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) | 
						
							| 55 | 54 | anbi2d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) )  ↔  ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) | 
						
							| 56 | 55 | rexbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) )  ↔  ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) | 
						
							| 57 | 56 | ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) )  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) | 
						
							| 58 | 57 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( 𝐶  Cn  𝐽 )  ∣  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) }  ↔  ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) ) ) | 
						
							| 59 | 45 58 | bitr4di | ⊢ ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  →  ( ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ ) )  ↔  𝐹  ∈  { 𝑓  ∈  ( 𝐶  Cn  𝐽 )  ∣  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ∃ 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } ) ( ∪  𝑠  =  ( ◡ 𝑓  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝑓  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) ) } ) ) | 
						
							| 60 | 30 59 | bitr4d | ⊢ ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  →  ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ↔  ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ ) ) ) ) | 
						
							| 61 | 7 60 | biadanii | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ↔  ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top )  ∧  ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ ) ) ) ) | 
						
							| 62 | 3 5 61 | 3bitr4ri | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ↔  ( ( 𝐶  ∈  Top  ∧  𝐽  ∈  Top  ∧  𝐹  ∈  ( 𝐶  Cn  𝐽 ) )  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑘  ∈  𝐽 ( 𝑥  ∈  𝑘  ∧  ( 𝑆 ‘ 𝑘 )  ≠  ∅ ) ) ) |