Metamath Proof Explorer


Theorem iscvm

Description: The property of being a covering map. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypotheses iscvm.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
iscvm.2 𝑋 = 𝐽
Assertion iscvm ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) )

Proof

Step Hyp Ref Expression
1 iscvm.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 iscvm.2 𝑋 = 𝐽
3 anass ( ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) ) )
4 df-3an ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) )
5 4 anbi1i ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) ↔ ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) )
6 df-cvm CovMap = ( 𝑐 ∈ Top , 𝑗 ∈ Top ↦ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 𝑗𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) } )
7 6 elmpocl ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) )
8 oveq12 ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( 𝑐 Cn 𝑗 ) = ( 𝐶 Cn 𝐽 ) )
9 simpr ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → 𝑗 = 𝐽 )
10 9 unieqd ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → 𝑗 = 𝐽 )
11 10 2 eqtr4di ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → 𝑗 = 𝑋 )
12 simpl ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → 𝑐 = 𝐶 )
13 12 pweqd ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → 𝒫 𝑐 = 𝒫 𝐶 )
14 13 difeq1d ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( 𝒫 𝑐 ∖ { ∅ } ) = ( 𝒫 𝐶 ∖ { ∅ } ) )
15 oveq1 ( 𝑐 = 𝐶 → ( 𝑐t 𝑢 ) = ( 𝐶t 𝑢 ) )
16 oveq1 ( 𝑗 = 𝐽 → ( 𝑗t 𝑘 ) = ( 𝐽t 𝑘 ) )
17 15 16 oveqan12d ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) = ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) )
18 17 eleq2d ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ↔ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) )
19 18 anbi2d ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ↔ ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) )
20 19 ralbidv ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ↔ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) )
21 20 anbi2d ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ↔ ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) )
22 14 21 rexeqbidv ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ↔ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) )
23 22 anbi2d ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) ↔ ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) )
24 9 23 rexeqbidv ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( ∃ 𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) ↔ ∃ 𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) )
25 11 24 raleqbidv ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → ( ∀ 𝑥 𝑗𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) ↔ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) )
26 8 25 rabeqbidv ( ( 𝑐 = 𝐶𝑗 = 𝐽 ) → { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 𝑗𝑘𝑗 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝑐t 𝑢 ) Homeo ( 𝑗t 𝑘 ) ) ) ) ) } = { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) } )
27 ovex ( 𝐶 Cn 𝐽 ) ∈ V
28 27 rabex { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) } ∈ V
29 26 6 28 ovmpoa ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝐶 CovMap 𝐽 ) = { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) } )
30 29 eleq2d ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) } ) )
31 id ( 𝑘𝐽𝑘𝐽 )
32 pwexg ( 𝐶 ∈ Top → 𝒫 𝐶 ∈ V )
33 32 adantr ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → 𝒫 𝐶 ∈ V )
34 difexg ( 𝒫 𝐶 ∈ V → ( 𝒫 𝐶 ∖ { ∅ } ) ∈ V )
35 rabexg ( ( 𝒫 𝐶 ∖ { ∅ } ) ∈ V → { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } ∈ V )
36 33 34 35 3syl ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } ∈ V )
37 1 fvmpt2 ( ( 𝑘𝐽 ∧ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } ∈ V ) → ( 𝑆𝑘 ) = { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
38 31 36 37 syl2anr ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝑘𝐽 ) → ( 𝑆𝑘 ) = { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
39 38 neeq1d ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝑘𝐽 ) → ( ( 𝑆𝑘 ) ≠ ∅ ↔ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } ≠ ∅ ) )
40 rabn0 ( { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } ≠ ∅ ↔ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) )
41 39 40 bitrdi ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝑘𝐽 ) → ( ( 𝑆𝑘 ) ≠ ∅ ↔ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) )
42 41 anbi2d ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝑘𝐽 ) → ( ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ↔ ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) )
43 42 rexbidva ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( ∃ 𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ↔ ∃ 𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) )
44 43 ralbidv ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ↔ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) )
45 44 anbi2d ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) ↔ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) ) )
46 cnveq ( 𝑓 = 𝐹 𝑓 = 𝐹 )
47 46 imaeq1d ( 𝑓 = 𝐹 → ( 𝑓𝑘 ) = ( 𝐹𝑘 ) )
48 47 eqeq2d ( 𝑓 = 𝐹 → ( 𝑠 = ( 𝑓𝑘 ) ↔ 𝑠 = ( 𝐹𝑘 ) ) )
49 reseq1 ( 𝑓 = 𝐹 → ( 𝑓𝑢 ) = ( 𝐹𝑢 ) )
50 49 eleq1d ( 𝑓 = 𝐹 → ( ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ↔ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) )
51 50 anbi2d ( 𝑓 = 𝐹 → ( ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ↔ ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) )
52 51 ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ↔ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) )
53 48 52 anbi12d ( 𝑓 = 𝐹 → ( ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ↔ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) )
54 53 rexbidv ( 𝑓 = 𝐹 → ( ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ↔ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) )
55 54 anbi2d ( 𝑓 = 𝐹 → ( ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ↔ ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) )
56 55 rexbidv ( 𝑓 = 𝐹 → ( ∃ 𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ↔ ∃ 𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) )
57 56 ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ↔ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) )
58 57 elrab ( 𝐹 ∈ { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) } ↔ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) ) )
59 45 58 bitr4di ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( 𝑠 = ( 𝑓𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝑓𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ) } ) )
60 30 59 bitr4d ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) ) )
61 7 60 biadanii ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) ) )
62 3 5 61 3bitr4ri ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) )