Step |
Hyp |
Ref |
Expression |
1 |
|
iscvm.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
iscvm.2 |
⊢ 𝑋 = ∪ 𝐽 |
3 |
|
anass |
⊢ ( ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ) ) |
4 |
|
df-3an |
⊢ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ) |
5 |
4
|
anbi1i |
⊢ ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ↔ ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ) |
6 |
|
df-cvm |
⊢ CovMap = ( 𝑐 ∈ Top , 𝑗 ∈ Top ↦ { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) } ) |
7 |
6
|
elmpocl |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ) |
8 |
|
oveq12 |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( 𝑐 Cn 𝑗 ) = ( 𝐶 Cn 𝐽 ) ) |
9 |
|
simpr |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → 𝑗 = 𝐽 ) |
10 |
9
|
unieqd |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ∪ 𝑗 = ∪ 𝐽 ) |
11 |
10 2
|
eqtr4di |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ∪ 𝑗 = 𝑋 ) |
12 |
|
simpl |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → 𝑐 = 𝐶 ) |
13 |
12
|
pweqd |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → 𝒫 𝑐 = 𝒫 𝐶 ) |
14 |
13
|
difeq1d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( 𝒫 𝑐 ∖ { ∅ } ) = ( 𝒫 𝐶 ∖ { ∅ } ) ) |
15 |
|
oveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ↾t 𝑢 ) = ( 𝐶 ↾t 𝑢 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ↾t 𝑘 ) = ( 𝐽 ↾t 𝑘 ) ) |
17 |
15 16
|
oveqan12d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) = ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) |
18 |
17
|
eleq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ↔ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) |
19 |
18
|
anbi2d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ↔ ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
20 |
19
|
ralbidv |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ↔ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
21 |
20
|
anbi2d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ↔ ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) |
22 |
14 21
|
rexeqbidv |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ↔ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) |
23 |
22
|
anbi2d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) ↔ ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) |
24 |
9 23
|
rexeqbidv |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) ↔ ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) |
25 |
11 24
|
raleqbidv |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → ( ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) |
26 |
8 25
|
rabeqbidv |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑗 = 𝐽 ) → { 𝑓 ∈ ( 𝑐 Cn 𝑗 ) ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑘 ∈ 𝑗 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝑐 ↾t 𝑢 ) Homeo ( 𝑗 ↾t 𝑘 ) ) ) ) ) } = { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) } ) |
27 |
|
ovex |
⊢ ( 𝐶 Cn 𝐽 ) ∈ V |
28 |
27
|
rabex |
⊢ { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) } ∈ V |
29 |
26 6 28
|
ovmpoa |
⊢ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝐶 CovMap 𝐽 ) = { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) } ) |
30 |
29
|
eleq2d |
⊢ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) } ) ) |
31 |
|
id |
⊢ ( 𝑘 ∈ 𝐽 → 𝑘 ∈ 𝐽 ) |
32 |
|
pwexg |
⊢ ( 𝐶 ∈ Top → 𝒫 𝐶 ∈ V ) |
33 |
32
|
adantr |
⊢ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → 𝒫 𝐶 ∈ V ) |
34 |
|
difexg |
⊢ ( 𝒫 𝐶 ∈ V → ( 𝒫 𝐶 ∖ { ∅ } ) ∈ V ) |
35 |
|
rabexg |
⊢ ( ( 𝒫 𝐶 ∖ { ∅ } ) ∈ V → { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ∈ V ) |
36 |
33 34 35
|
3syl |
⊢ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ∈ V ) |
37 |
1
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐽 ∧ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ∈ V ) → ( 𝑆 ‘ 𝑘 ) = { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
38 |
31 36 37
|
syl2anr |
⊢ ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝑘 ∈ 𝐽 ) → ( 𝑆 ‘ 𝑘 ) = { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
39 |
38
|
neeq1d |
⊢ ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝑘 ∈ 𝐽 ) → ( ( 𝑆 ‘ 𝑘 ) ≠ ∅ ↔ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ≠ ∅ ) ) |
40 |
|
rabn0 |
⊢ ( { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ≠ ∅ ↔ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
41 |
39 40
|
bitrdi |
⊢ ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝑘 ∈ 𝐽 ) → ( ( 𝑆 ‘ 𝑘 ) ≠ ∅ ↔ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) |
42 |
41
|
anbi2d |
⊢ ( ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ 𝑘 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ↔ ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) |
43 |
42
|
rexbidva |
⊢ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ↔ ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) |
44 |
43
|
ralbidv |
⊢ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) |
45 |
44
|
anbi2d |
⊢ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ↔ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) ) |
46 |
|
cnveq |
⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) |
47 |
46
|
imaeq1d |
⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ 𝑘 ) = ( ◡ 𝐹 “ 𝑘 ) ) |
48 |
47
|
eqeq2d |
⊢ ( 𝑓 = 𝐹 → ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ↔ ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ) ) |
49 |
|
reseq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ↾ 𝑢 ) = ( 𝐹 ↾ 𝑢 ) ) |
50 |
49
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ↔ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) |
51 |
50
|
anbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ↔ ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
52 |
51
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ↔ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
53 |
48 52
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ↔ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) |
54 |
53
|
rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ↔ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) |
55 |
54
|
anbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ↔ ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) |
56 |
55
|
rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ↔ ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) |
57 |
56
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) |
58 |
57
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) } ↔ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) ) ) |
59 |
45 58
|
bitr4di |
⊢ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐶 Cn 𝐽 ) ∣ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ∃ 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ( ∪ 𝑠 = ( ◡ 𝑓 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝑓 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ) } ) ) |
60 |
30 59
|
bitr4d |
⊢ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ) ) |
61 |
7 60
|
biadanii |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) ∧ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ) ) |
62 |
3 5 61
|
3bitr4ri |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ) |