Step |
Hyp |
Ref |
Expression |
1 |
|
iscvm.1 |
|
2 |
|
iscvm.2 |
|
3 |
|
anass |
|
4 |
|
df-3an |
|
5 |
4
|
anbi1i |
|
6 |
|
df-cvm |
|
7 |
6
|
elmpocl |
|
8 |
|
oveq12 |
|
9 |
|
simpr |
|
10 |
9
|
unieqd |
|
11 |
10 2
|
eqtr4di |
|
12 |
|
simpl |
|
13 |
12
|
pweqd |
|
14 |
13
|
difeq1d |
|
15 |
|
oveq1 |
|
16 |
|
oveq1 |
|
17 |
15 16
|
oveqan12d |
|
18 |
17
|
eleq2d |
|
19 |
18
|
anbi2d |
|
20 |
19
|
ralbidv |
|
21 |
20
|
anbi2d |
|
22 |
14 21
|
rexeqbidv |
|
23 |
22
|
anbi2d |
|
24 |
9 23
|
rexeqbidv |
|
25 |
11 24
|
raleqbidv |
|
26 |
8 25
|
rabeqbidv |
|
27 |
|
ovex |
|
28 |
27
|
rabex |
|
29 |
26 6 28
|
ovmpoa |
|
30 |
29
|
eleq2d |
|
31 |
|
id |
|
32 |
|
pwexg |
|
33 |
32
|
adantr |
|
34 |
|
difexg |
|
35 |
|
rabexg |
|
36 |
33 34 35
|
3syl |
|
37 |
1
|
fvmpt2 |
|
38 |
31 36 37
|
syl2anr |
|
39 |
38
|
neeq1d |
|
40 |
|
rabn0 |
|
41 |
39 40
|
bitrdi |
|
42 |
41
|
anbi2d |
|
43 |
42
|
rexbidva |
|
44 |
43
|
ralbidv |
|
45 |
44
|
anbi2d |
|
46 |
|
cnveq |
|
47 |
46
|
imaeq1d |
|
48 |
47
|
eqeq2d |
|
49 |
|
reseq1 |
|
50 |
49
|
eleq1d |
|
51 |
50
|
anbi2d |
|
52 |
51
|
ralbidv |
|
53 |
48 52
|
anbi12d |
|
54 |
53
|
rexbidv |
|
55 |
54
|
anbi2d |
|
56 |
55
|
rexbidv |
|
57 |
56
|
ralbidv |
|
58 |
57
|
elrab |
|
59 |
45 58
|
bitr4di |
|
60 |
30 59
|
bitr4d |
|
61 |
7 60
|
biadanii |
|
62 |
3 5 61
|
3bitr4ri |
|