Metamath Proof Explorer


Theorem iscvm

Description: The property of being a covering map. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypotheses iscvm.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
iscvm.2 X = J
Assertion iscvm F C CovMap J C Top J Top F C Cn J x X k J x k S k

Proof

Step Hyp Ref Expression
1 iscvm.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 iscvm.2 X = J
3 anass C Top J Top F C Cn J x X k J x k S k C Top J Top F C Cn J x X k J x k S k
4 df-3an C Top J Top F C Cn J C Top J Top F C Cn J
5 4 anbi1i C Top J Top F C Cn J x X k J x k S k C Top J Top F C Cn J x X k J x k S k
6 df-cvm CovMap = c Top , j Top f c Cn j | x j k j x k s 𝒫 c s = f -1 k u s v s u u v = f u c 𝑡 u Homeo j 𝑡 k
7 6 elmpocl F C CovMap J C Top J Top
8 oveq12 c = C j = J c Cn j = C Cn J
9 simpr c = C j = J j = J
10 9 unieqd c = C j = J j = J
11 10 2 eqtr4di c = C j = J j = X
12 simpl c = C j = J c = C
13 12 pweqd c = C j = J 𝒫 c = 𝒫 C
14 13 difeq1d c = C j = J 𝒫 c = 𝒫 C
15 oveq1 c = C c 𝑡 u = C 𝑡 u
16 oveq1 j = J j 𝑡 k = J 𝑡 k
17 15 16 oveqan12d c = C j = J c 𝑡 u Homeo j 𝑡 k = C 𝑡 u Homeo J 𝑡 k
18 17 eleq2d c = C j = J f u c 𝑡 u Homeo j 𝑡 k f u C 𝑡 u Homeo J 𝑡 k
19 18 anbi2d c = C j = J v s u u v = f u c 𝑡 u Homeo j 𝑡 k v s u u v = f u C 𝑡 u Homeo J 𝑡 k
20 19 ralbidv c = C j = J u s v s u u v = f u c 𝑡 u Homeo j 𝑡 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k
21 20 anbi2d c = C j = J s = f -1 k u s v s u u v = f u c 𝑡 u Homeo j 𝑡 k s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k
22 14 21 rexeqbidv c = C j = J s 𝒫 c s = f -1 k u s v s u u v = f u c 𝑡 u Homeo j 𝑡 k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k
23 22 anbi2d c = C j = J x k s 𝒫 c s = f -1 k u s v s u u v = f u c 𝑡 u Homeo j 𝑡 k x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k
24 9 23 rexeqbidv c = C j = J k j x k s 𝒫 c s = f -1 k u s v s u u v = f u c 𝑡 u Homeo j 𝑡 k k J x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k
25 11 24 raleqbidv c = C j = J x j k j x k s 𝒫 c s = f -1 k u s v s u u v = f u c 𝑡 u Homeo j 𝑡 k x X k J x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k
26 8 25 rabeqbidv c = C j = J f c Cn j | x j k j x k s 𝒫 c s = f -1 k u s v s u u v = f u c 𝑡 u Homeo j 𝑡 k = f C Cn J | x X k J x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k
27 ovex C Cn J V
28 27 rabex f C Cn J | x X k J x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k V
29 26 6 28 ovmpoa C Top J Top C CovMap J = f C Cn J | x X k J x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k
30 29 eleq2d C Top J Top F C CovMap J F f C Cn J | x X k J x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k
31 id k J k J
32 pwexg C Top 𝒫 C V
33 32 adantr C Top J Top 𝒫 C V
34 difexg 𝒫 C V 𝒫 C V
35 rabexg 𝒫 C V s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k V
36 33 34 35 3syl C Top J Top s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k V
37 1 fvmpt2 k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k V S k = s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
38 31 36 37 syl2anr C Top J Top k J S k = s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
39 38 neeq1d C Top J Top k J S k s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
40 rabn0 s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
41 39 40 bitrdi C Top J Top k J S k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
42 41 anbi2d C Top J Top k J x k S k x k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
43 42 rexbidva C Top J Top k J x k S k k J x k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
44 43 ralbidv C Top J Top x X k J x k S k x X k J x k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
45 44 anbi2d C Top J Top F C Cn J x X k J x k S k F C Cn J x X k J x k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
46 cnveq f = F f -1 = F -1
47 46 imaeq1d f = F f -1 k = F -1 k
48 47 eqeq2d f = F s = f -1 k s = F -1 k
49 reseq1 f = F f u = F u
50 49 eleq1d f = F f u C 𝑡 u Homeo J 𝑡 k F u C 𝑡 u Homeo J 𝑡 k
51 50 anbi2d f = F v s u u v = f u C 𝑡 u Homeo J 𝑡 k v s u u v = F u C 𝑡 u Homeo J 𝑡 k
52 51 ralbidv f = F u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
53 48 52 anbi12d f = F s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
54 53 rexbidv f = F s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
55 54 anbi2d f = F x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k x k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
56 55 rexbidv f = F k J x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k k J x k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
57 56 ralbidv f = F x X k J x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k x X k J x k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
58 57 elrab F f C Cn J | x X k J x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k F C Cn J x X k J x k s 𝒫 C s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
59 45 58 bitr4di C Top J Top F C Cn J x X k J x k S k F f C Cn J | x X k J x k s 𝒫 C s = f -1 k u s v s u u v = f u C 𝑡 u Homeo J 𝑡 k
60 30 59 bitr4d C Top J Top F C CovMap J F C Cn J x X k J x k S k
61 7 60 biadanii F C CovMap J C Top J Top F C Cn J x X k J x k S k
62 3 5 61 3bitr4ri F C CovMap J C Top J Top F C Cn J x X k J x k S k