Metamath Proof Explorer


Theorem iscvm

Description: The property of being a covering map. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypotheses iscvm.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
iscvm.2 X=J
Assertion iscvm FCCovMapJCTopJTopFCCnJxXkJxkSk

Proof

Step Hyp Ref Expression
1 iscvm.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 iscvm.2 X=J
3 anass CTopJTopFCCnJxXkJxkSkCTopJTopFCCnJxXkJxkSk
4 df-3an CTopJTopFCCnJCTopJTopFCCnJ
5 4 anbi1i CTopJTopFCCnJxXkJxkSkCTopJTopFCCnJxXkJxkSk
6 df-cvm CovMap=cTop,jTopfcCnj|xjkjxks𝒫cs=f-1kusvsuuv=fuc𝑡uHomeoj𝑡k
7 6 elmpocl FCCovMapJCTopJTop
8 oveq12 c=Cj=JcCnj=CCnJ
9 simpr c=Cj=Jj=J
10 9 unieqd c=Cj=Jj=J
11 10 2 eqtr4di c=Cj=Jj=X
12 simpl c=Cj=Jc=C
13 12 pweqd c=Cj=J𝒫c=𝒫C
14 13 difeq1d c=Cj=J𝒫c=𝒫C
15 oveq1 c=Cc𝑡u=C𝑡u
16 oveq1 j=Jj𝑡k=J𝑡k
17 15 16 oveqan12d c=Cj=Jc𝑡uHomeoj𝑡k=C𝑡uHomeoJ𝑡k
18 17 eleq2d c=Cj=Jfuc𝑡uHomeoj𝑡kfuC𝑡uHomeoJ𝑡k
19 18 anbi2d c=Cj=Jvsuuv=fuc𝑡uHomeoj𝑡kvsuuv=fuC𝑡uHomeoJ𝑡k
20 19 ralbidv c=Cj=Jusvsuuv=fuc𝑡uHomeoj𝑡kusvsuuv=fuC𝑡uHomeoJ𝑡k
21 20 anbi2d c=Cj=Js=f-1kusvsuuv=fuc𝑡uHomeoj𝑡ks=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡k
22 14 21 rexeqbidv c=Cj=Js𝒫cs=f-1kusvsuuv=fuc𝑡uHomeoj𝑡ks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡k
23 22 anbi2d c=Cj=Jxks𝒫cs=f-1kusvsuuv=fuc𝑡uHomeoj𝑡kxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡k
24 9 23 rexeqbidv c=Cj=Jkjxks𝒫cs=f-1kusvsuuv=fuc𝑡uHomeoj𝑡kkJxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡k
25 11 24 raleqbidv c=Cj=Jxjkjxks𝒫cs=f-1kusvsuuv=fuc𝑡uHomeoj𝑡kxXkJxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡k
26 8 25 rabeqbidv c=Cj=JfcCnj|xjkjxks𝒫cs=f-1kusvsuuv=fuc𝑡uHomeoj𝑡k=fCCnJ|xXkJxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡k
27 ovex CCnJV
28 27 rabex fCCnJ|xXkJxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡kV
29 26 6 28 ovmpoa CTopJTopCCovMapJ=fCCnJ|xXkJxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡k
30 29 eleq2d CTopJTopFCCovMapJFfCCnJ|xXkJxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡k
31 id kJkJ
32 pwexg CTop𝒫CV
33 32 adantr CTopJTop𝒫CV
34 difexg 𝒫CV𝒫CV
35 rabexg 𝒫CVs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡kV
36 33 34 35 3syl CTopJTops𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡kV
37 1 fvmpt2 kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡kVSk=s𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
38 31 36 37 syl2anr CTopJTopkJSk=s𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
39 38 neeq1d CTopJTopkJSks𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
40 rabn0 s𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡ks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
41 39 40 bitrdi CTopJTopkJSks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
42 41 anbi2d CTopJTopkJxkSkxks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
43 42 rexbidva CTopJTopkJxkSkkJxks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
44 43 ralbidv CTopJTopxXkJxkSkxXkJxks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
45 44 anbi2d CTopJTopFCCnJxXkJxkSkFCCnJxXkJxks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
46 cnveq f=Ff-1=F-1
47 46 imaeq1d f=Ff-1k=F-1k
48 47 eqeq2d f=Fs=f-1ks=F-1k
49 reseq1 f=Ffu=Fu
50 49 eleq1d f=FfuC𝑡uHomeoJ𝑡kFuC𝑡uHomeoJ𝑡k
51 50 anbi2d f=Fvsuuv=fuC𝑡uHomeoJ𝑡kvsuuv=FuC𝑡uHomeoJ𝑡k
52 51 ralbidv f=Fusvsuuv=fuC𝑡uHomeoJ𝑡kusvsuuv=FuC𝑡uHomeoJ𝑡k
53 48 52 anbi12d f=Fs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡ks=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
54 53 rexbidv f=Fs𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡ks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
55 54 anbi2d f=Fxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡kxks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
56 55 rexbidv f=FkJxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡kkJxks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
57 56 ralbidv f=FxXkJxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡kxXkJxks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
58 57 elrab FfCCnJ|xXkJxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡kFCCnJxXkJxks𝒫Cs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
59 45 58 bitr4di CTopJTopFCCnJxXkJxkSkFfCCnJ|xXkJxks𝒫Cs=f-1kusvsuuv=fuC𝑡uHomeoJ𝑡k
60 30 59 bitr4d CTopJTopFCCovMapJFCCnJxXkJxkSk
61 7 60 biadanii FCCovMapJCTopJTopFCCnJxXkJxkSk
62 3 5 61 3bitr4ri FCCovMapJCTopJTopFCCnJxXkJxkSk