Description: The property of being a covering map. (Contributed by Mario Carneiro, 13-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iscvm.1 | |
|
iscvm.2 | |
||
Assertion | iscvm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscvm.1 | |
|
2 | iscvm.2 | |
|
3 | anass | |
|
4 | df-3an | |
|
5 | 4 | anbi1i | |
6 | df-cvm | |
|
7 | 6 | elmpocl | |
8 | oveq12 | |
|
9 | simpr | |
|
10 | 9 | unieqd | |
11 | 10 2 | eqtr4di | |
12 | simpl | |
|
13 | 12 | pweqd | |
14 | 13 | difeq1d | |
15 | oveq1 | |
|
16 | oveq1 | |
|
17 | 15 16 | oveqan12d | |
18 | 17 | eleq2d | |
19 | 18 | anbi2d | |
20 | 19 | ralbidv | |
21 | 20 | anbi2d | |
22 | 14 21 | rexeqbidv | |
23 | 22 | anbi2d | |
24 | 9 23 | rexeqbidv | |
25 | 11 24 | raleqbidv | |
26 | 8 25 | rabeqbidv | |
27 | ovex | |
|
28 | 27 | rabex | |
29 | 26 6 28 | ovmpoa | |
30 | 29 | eleq2d | |
31 | id | |
|
32 | pwexg | |
|
33 | 32 | adantr | |
34 | difexg | |
|
35 | rabexg | |
|
36 | 33 34 35 | 3syl | |
37 | 1 | fvmpt2 | |
38 | 31 36 37 | syl2anr | |
39 | 38 | neeq1d | |
40 | rabn0 | |
|
41 | 39 40 | bitrdi | |
42 | 41 | anbi2d | |
43 | 42 | rexbidva | |
44 | 43 | ralbidv | |
45 | 44 | anbi2d | |
46 | cnveq | |
|
47 | 46 | imaeq1d | |
48 | 47 | eqeq2d | |
49 | reseq1 | |
|
50 | 49 | eleq1d | |
51 | 50 | anbi2d | |
52 | 51 | ralbidv | |
53 | 48 52 | anbi12d | |
54 | 53 | rexbidv | |
55 | 54 | anbi2d | |
56 | 55 | rexbidv | |
57 | 56 | ralbidv | |
58 | 57 | elrab | |
59 | 45 58 | bitr4di | |
60 | 30 59 | bitr4d | |
61 | 7 60 | biadanii | |
62 | 3 5 61 | 3bitr4ri | |