| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscvm.1 |  | 
						
							| 2 |  | unieq |  | 
						
							| 3 | 2 | eqeq1d |  | 
						
							| 4 |  | ineq2 |  | 
						
							| 5 | 4 | eqeq1d |  | 
						
							| 6 | 5 | cbvralvw |  | 
						
							| 7 |  | sneq |  | 
						
							| 8 | 7 | difeq2d |  | 
						
							| 9 |  | ineq1 |  | 
						
							| 10 | 9 | eqeq1d |  | 
						
							| 11 | 8 10 | raleqbidv |  | 
						
							| 12 | 6 11 | bitrid |  | 
						
							| 13 |  | reseq2 |  | 
						
							| 14 |  | oveq2 |  | 
						
							| 15 | 14 | oveq1d |  | 
						
							| 16 | 13 15 | eleq12d |  | 
						
							| 17 | 12 16 | anbi12d |  | 
						
							| 18 | 17 | cbvralvw |  | 
						
							| 19 |  | difeq1 |  | 
						
							| 20 | 19 | raleqdv |  | 
						
							| 21 | 20 | anbi1d |  | 
						
							| 22 | 21 | raleqbi1dv |  | 
						
							| 23 | 18 22 | bitrid |  | 
						
							| 24 | 3 23 | anbi12d |  | 
						
							| 25 | 24 | cbvrabv |  | 
						
							| 26 |  | imaeq2 |  | 
						
							| 27 | 26 | eqeq2d |  | 
						
							| 28 |  | oveq2 |  | 
						
							| 29 | 28 | oveq2d |  | 
						
							| 30 | 29 | eleq2d |  | 
						
							| 31 | 30 | anbi2d |  | 
						
							| 32 | 31 | ralbidv |  | 
						
							| 33 | 27 32 | anbi12d |  | 
						
							| 34 | 33 | rabbidv |  | 
						
							| 35 | 25 34 | eqtrid |  | 
						
							| 36 | 35 | cbvmptv |  | 
						
							| 37 | 1 36 | eqtri |  |