| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscvm.1 |
|
| 2 |
|
unieq |
|
| 3 |
2
|
eqeq1d |
|
| 4 |
|
ineq2 |
|
| 5 |
4
|
eqeq1d |
|
| 6 |
5
|
cbvralvw |
|
| 7 |
|
sneq |
|
| 8 |
7
|
difeq2d |
|
| 9 |
|
ineq1 |
|
| 10 |
9
|
eqeq1d |
|
| 11 |
8 10
|
raleqbidv |
|
| 12 |
6 11
|
bitrid |
|
| 13 |
|
reseq2 |
|
| 14 |
|
oveq2 |
|
| 15 |
14
|
oveq1d |
|
| 16 |
13 15
|
eleq12d |
|
| 17 |
12 16
|
anbi12d |
|
| 18 |
17
|
cbvralvw |
|
| 19 |
|
difeq1 |
|
| 20 |
19
|
raleqdv |
|
| 21 |
20
|
anbi1d |
|
| 22 |
21
|
raleqbi1dv |
|
| 23 |
18 22
|
bitrid |
|
| 24 |
3 23
|
anbi12d |
|
| 25 |
24
|
cbvrabv |
|
| 26 |
|
imaeq2 |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
|
oveq2 |
|
| 29 |
28
|
oveq2d |
|
| 30 |
29
|
eleq2d |
|
| 31 |
30
|
anbi2d |
|
| 32 |
31
|
ralbidv |
|
| 33 |
27 32
|
anbi12d |
|
| 34 |
33
|
rabbidv |
|
| 35 |
25 34
|
eqtrid |
|
| 36 |
35
|
cbvmptv |
|
| 37 |
1 36
|
eqtri |
|