Metamath Proof Explorer


Definition df-domn

Description: Adomain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Assertion df-domn Domn = { 𝑟 ∈ NzRing ∣ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g𝑟 ) / 𝑧 ]𝑥𝑏𝑦𝑏 ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdomn Domn
1 vr 𝑟
2 cnzr NzRing
3 cbs Base
4 1 cv 𝑟
5 4 3 cfv ( Base ‘ 𝑟 )
6 vb 𝑏
7 c0g 0g
8 4 7 cfv ( 0g𝑟 )
9 vz 𝑧
10 vx 𝑥
11 6 cv 𝑏
12 vy 𝑦
13 10 cv 𝑥
14 cmulr .r
15 4 14 cfv ( .r𝑟 )
16 12 cv 𝑦
17 13 16 15 co ( 𝑥 ( .r𝑟 ) 𝑦 )
18 9 cv 𝑧
19 17 18 wceq ( 𝑥 ( .r𝑟 ) 𝑦 ) = 𝑧
20 13 18 wceq 𝑥 = 𝑧
21 16 18 wceq 𝑦 = 𝑧
22 20 21 wo ( 𝑥 = 𝑧𝑦 = 𝑧 )
23 19 22 wi ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
24 23 12 11 wral 𝑦𝑏 ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
25 24 10 11 wral 𝑥𝑏𝑦𝑏 ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
26 25 9 8 wsbc [ ( 0g𝑟 ) / 𝑧 ]𝑥𝑏𝑦𝑏 ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
27 26 6 5 wsbc [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g𝑟 ) / 𝑧 ]𝑥𝑏𝑦𝑏 ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
28 27 1 2 crab { 𝑟 ∈ NzRing ∣ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g𝑟 ) / 𝑧 ]𝑥𝑏𝑦𝑏 ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) ) }
29 0 28 wceq Domn = { 𝑟 ∈ NzRing ∣ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g𝑟 ) / 𝑧 ]𝑥𝑏𝑦𝑏 ( ( 𝑥 ( .r𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) ) }