| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdomn |
|- Domn |
| 1 |
|
vr |
|- r |
| 2 |
|
cnzr |
|- NzRing |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- r |
| 5 |
4 3
|
cfv |
|- ( Base ` r ) |
| 6 |
|
vb |
|- b |
| 7 |
|
c0g |
|- 0g |
| 8 |
4 7
|
cfv |
|- ( 0g ` r ) |
| 9 |
|
vz |
|- z |
| 10 |
|
vx |
|- x |
| 11 |
6
|
cv |
|- b |
| 12 |
|
vy |
|- y |
| 13 |
10
|
cv |
|- x |
| 14 |
|
cmulr |
|- .r |
| 15 |
4 14
|
cfv |
|- ( .r ` r ) |
| 16 |
12
|
cv |
|- y |
| 17 |
13 16 15
|
co |
|- ( x ( .r ` r ) y ) |
| 18 |
9
|
cv |
|- z |
| 19 |
17 18
|
wceq |
|- ( x ( .r ` r ) y ) = z |
| 20 |
13 18
|
wceq |
|- x = z |
| 21 |
16 18
|
wceq |
|- y = z |
| 22 |
20 21
|
wo |
|- ( x = z \/ y = z ) |
| 23 |
19 22
|
wi |
|- ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) |
| 24 |
23 12 11
|
wral |
|- A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) |
| 25 |
24 10 11
|
wral |
|- A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) |
| 26 |
25 9 8
|
wsbc |
|- [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) |
| 27 |
26 6 5
|
wsbc |
|- [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) |
| 28 |
27 1 2
|
crab |
|- { r e. NzRing | [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) } |
| 29 |
0 28
|
wceq |
|- Domn = { r e. NzRing | [. ( Base ` r ) / b ]. [. ( 0g ` r ) / z ]. A. x e. b A. y e. b ( ( x ( .r ` r ) y ) = z -> ( x = z \/ y = z ) ) } |