| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ces1 |
⊢ evalSub1 |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑠 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑠 ) |
| 8 |
|
vb |
⊢ 𝑏 |
| 9 |
|
vx |
⊢ 𝑥 |
| 10 |
8
|
cv |
⊢ 𝑏 |
| 11 |
|
cmap |
⊢ ↑m |
| 12 |
|
c1o |
⊢ 1o |
| 13 |
10 12 11
|
co |
⊢ ( 𝑏 ↑m 1o ) |
| 14 |
10 13 11
|
co |
⊢ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) |
| 15 |
9
|
cv |
⊢ 𝑥 |
| 16 |
|
vy |
⊢ 𝑦 |
| 17 |
16
|
cv |
⊢ 𝑦 |
| 18 |
17
|
csn |
⊢ { 𝑦 } |
| 19 |
12 18
|
cxp |
⊢ ( 1o × { 𝑦 } ) |
| 20 |
16 10 19
|
cmpt |
⊢ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) |
| 21 |
15 20
|
ccom |
⊢ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) |
| 22 |
9 14 21
|
cmpt |
⊢ ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 23 |
|
ces |
⊢ evalSub |
| 24 |
12 5 23
|
co |
⊢ ( 1o evalSub 𝑠 ) |
| 25 |
3
|
cv |
⊢ 𝑟 |
| 26 |
25 24
|
cfv |
⊢ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) |
| 27 |
22 26
|
ccom |
⊢ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) |
| 28 |
8 6 27
|
csb |
⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) |
| 29 |
1 3 2 7 28
|
cmpo |
⊢ ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
| 30 |
0 29
|
wceq |
⊢ evalSub1 = ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |