Metamath Proof Explorer


Definition df-gpg

Description: Definition of generalized Petersen graphs according to Wikipedia "Generalized Petersen graph", 26-Aug-2025, https://en.wikipedia.org/wiki/Generalized_Petersen_graph : "In Watkins' notation, G ( n , k ) is a graph with vertex set { u_0, u_1, ... , u_n-1, v_0, v_1, ... , v_n-1 } and edge set { u_i u_i+1 , u_i v_i , v_i v_i+k | 0 <_ i <_ ( n - 1 ) } where subscripts are to be read modulo n and where k < ( n / 2 ) . Some authors use the notation GPG(n,k)."

Instead of n e. NN , we could restrict the first argument to n e. ( ZZ>=3 ) (i.e., 3 <_ n ), because for n <_ 2 , the definition is not meaningful (since then ( |^( n / 2 ) ) <_ 1 and therefore ( 1 ..^ ( |^( n / 2 ) ) ) = (/) , so that there would be no fitting second argument). (Contributed by AV, 26-Aug-2025)

Ref Expression
Assertion df-gpg gPetersenGr = ( 𝑛 ∈ ℕ , 𝑘 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑛 / 2 ) ) ) ↦ { ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑛 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ } ) } ) ⟩ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgpg gPetersenGr
1 vn 𝑛
2 cn
3 vk 𝑘
4 c1 1
5 cfzo ..^
6 cceil
7 1 cv 𝑛
8 cdiv /
9 c2 2
10 7 9 8 co ( 𝑛 / 2 )
11 10 6 cfv ( ⌈ ‘ ( 𝑛 / 2 ) )
12 4 11 5 co ( 1 ..^ ( ⌈ ‘ ( 𝑛 / 2 ) ) )
13 cbs Base
14 cnx ndx
15 14 13 cfv ( Base ‘ ndx )
16 cc0 0
17 16 4 cpr { 0 , 1 }
18 16 7 5 co ( 0 ..^ 𝑛 )
19 17 18 cxp ( { 0 , 1 } × ( 0 ..^ 𝑛 ) )
20 15 19 cop ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ⟩
21 cedgf .ef
22 14 21 cfv ( .ef ‘ ndx )
23 cid I
24 ve 𝑒
25 19 cpw 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑛 ) )
26 vx 𝑥
27 24 cv 𝑒
28 26 cv 𝑥
29 16 28 cop ⟨ 0 , 𝑥
30 caddc +
31 28 4 30 co ( 𝑥 + 1 )
32 cmo mod
33 31 7 32 co ( ( 𝑥 + 1 ) mod 𝑛 )
34 16 33 cop ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩
35 29 34 cpr { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ }
36 27 35 wceq 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ }
37 4 28 cop ⟨ 1 , 𝑥
38 29 37 cpr { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ }
39 27 38 wceq 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ }
40 3 cv 𝑘
41 28 40 30 co ( 𝑥 + 𝑘 )
42 41 7 32 co ( ( 𝑥 + 𝑘 ) mod 𝑛 )
43 4 42 cop ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩
44 37 43 cpr { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ }
45 27 44 wceq 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ }
46 36 39 45 w3o ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ } )
47 46 26 18 wrex 𝑥 ∈ ( 0 ..^ 𝑛 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ } )
48 47 24 25 crab { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑛 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ } ) }
49 23 48 cres ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑛 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ } ) } )
50 22 49 cop ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑛 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ } ) } ) ⟩
51 20 50 cpr { ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑛 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ } ) } ) ⟩ }
52 1 3 2 12 51 cmpo ( 𝑛 ∈ ℕ , 𝑘 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑛 / 2 ) ) ) ↦ { ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑛 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ } ) } ) ⟩ } )
53 0 52 wceq gPetersenGr = ( 𝑛 ∈ ℕ , 𝑘 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑛 / 2 ) ) ) ↦ { ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × ( 0 ..^ 𝑛 ) ) ∣ ∃ 𝑥 ∈ ( 0 ..^ 𝑛 ) ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑛 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝑘 ) mod 𝑛 ) ⟩ } ) } ) ⟩ } )