Description: Definition of generalized Petersen graphs according to Wikipedia "Generalized Petersen graph", 26-Aug-2025, https://en.wikipedia.org/wiki/Generalized_Petersen_graph : "In Watkins' notation, G ( n , k ) is a graph with vertex set { u_0, u_1, ... , u_n-1, v_0, v_1, ... , v_n-1 } and edge set { u_i u_i+1 , u_i v_i , v_i v_i+k | 0 <_ i <_ ( n - 1 ) } where subscripts are to be read modulo n and where k < ( n / 2 ) . Some authors use the notation GPG(n,k)."
Instead of n e. NN , we could restrict the first argument to n e. ( ZZ>=3 ) (i.e., 3 <_ n ), because for n <_ 2 , the definition is not meaningful (since then ( |^( n / 2 ) ) <_ 1 and therefore ( 1 ..^ ( |^( n / 2 ) ) ) = (/) , so that there would be no fitting second argument). (Contributed by AV, 26-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | df-gpg | |- gPetersenGr = ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cgpg | |- gPetersenGr |
|
1 | vn | |- n |
|
2 | cn | |- NN |
|
3 | vk | |- k |
|
4 | c1 | |- 1 |
|
5 | cfzo | |- ..^ |
|
6 | cceil | |- |^ |
|
7 | 1 | cv | |- n |
8 | cdiv | |- / |
|
9 | c2 | |- 2 |
|
10 | 7 9 8 | co | |- ( n / 2 ) |
11 | 10 6 | cfv | |- ( |^ ` ( n / 2 ) ) |
12 | 4 11 5 | co | |- ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |
13 | cbs | |- Base |
|
14 | cnx | |- ndx |
|
15 | 14 13 | cfv | |- ( Base ` ndx ) |
16 | cc0 | |- 0 |
|
17 | 16 4 | cpr | |- { 0 , 1 } |
18 | 16 7 5 | co | |- ( 0 ..^ n ) |
19 | 17 18 | cxp | |- ( { 0 , 1 } X. ( 0 ..^ n ) ) |
20 | 15 19 | cop | |- <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. |
21 | cedgf | |- .ef |
|
22 | 14 21 | cfv | |- ( .ef ` ndx ) |
23 | cid | |- _I |
|
24 | ve | |- e |
|
25 | 19 | cpw | |- ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) |
26 | vx | |- x |
|
27 | 24 | cv | |- e |
28 | 26 | cv | |- x |
29 | 16 28 | cop | |- <. 0 , x >. |
30 | caddc | |- + |
|
31 | 28 4 30 | co | |- ( x + 1 ) |
32 | cmo | |- mod |
|
33 | 31 7 32 | co | |- ( ( x + 1 ) mod n ) |
34 | 16 33 | cop | |- <. 0 , ( ( x + 1 ) mod n ) >. |
35 | 29 34 | cpr | |- { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } |
36 | 27 35 | wceq | |- e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } |
37 | 4 28 | cop | |- <. 1 , x >. |
38 | 29 37 | cpr | |- { <. 0 , x >. , <. 1 , x >. } |
39 | 27 38 | wceq | |- e = { <. 0 , x >. , <. 1 , x >. } |
40 | 3 | cv | |- k |
41 | 28 40 30 | co | |- ( x + k ) |
42 | 41 7 32 | co | |- ( ( x + k ) mod n ) |
43 | 4 42 | cop | |- <. 1 , ( ( x + k ) mod n ) >. |
44 | 37 43 | cpr | |- { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } |
45 | 27 44 | wceq | |- e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } |
46 | 36 39 45 | w3o | |- ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) |
47 | 46 26 18 | wrex | |- E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) |
48 | 47 24 25 | crab | |- { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } |
49 | 23 48 | cres | |- ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) |
50 | 22 49 | cop | |- <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. |
51 | 20 50 | cpr | |- { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } |
52 | 1 3 2 12 51 | cmpo | |- ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) |
53 | 0 52 | wceq | |- gPetersenGr = ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) |