| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgr |
⊢ GrpOp |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
vt |
⊢ 𝑡 |
| 3 |
1
|
cv |
⊢ 𝑔 |
| 4 |
2
|
cv |
⊢ 𝑡 |
| 5 |
4 4
|
cxp |
⊢ ( 𝑡 × 𝑡 ) |
| 6 |
5 4 3
|
wf |
⊢ 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 |
| 7 |
|
vx |
⊢ 𝑥 |
| 8 |
|
vy |
⊢ 𝑦 |
| 9 |
|
vz |
⊢ 𝑧 |
| 10 |
7
|
cv |
⊢ 𝑥 |
| 11 |
8
|
cv |
⊢ 𝑦 |
| 12 |
10 11 3
|
co |
⊢ ( 𝑥 𝑔 𝑦 ) |
| 13 |
9
|
cv |
⊢ 𝑧 |
| 14 |
12 13 3
|
co |
⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) |
| 15 |
11 13 3
|
co |
⊢ ( 𝑦 𝑔 𝑧 ) |
| 16 |
10 15 3
|
co |
⊢ ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 17 |
14 16
|
wceq |
⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 18 |
17 9 4
|
wral |
⊢ ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 19 |
18 8 4
|
wral |
⊢ ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 20 |
19 7 4
|
wral |
⊢ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 21 |
|
vu |
⊢ 𝑢 |
| 22 |
21
|
cv |
⊢ 𝑢 |
| 23 |
22 10 3
|
co |
⊢ ( 𝑢 𝑔 𝑥 ) |
| 24 |
23 10
|
wceq |
⊢ ( 𝑢 𝑔 𝑥 ) = 𝑥 |
| 25 |
11 10 3
|
co |
⊢ ( 𝑦 𝑔 𝑥 ) |
| 26 |
25 22
|
wceq |
⊢ ( 𝑦 𝑔 𝑥 ) = 𝑢 |
| 27 |
26 8 4
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 |
| 28 |
24 27
|
wa |
⊢ ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) |
| 29 |
28 7 4
|
wral |
⊢ ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) |
| 30 |
29 21 4
|
wrex |
⊢ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) |
| 31 |
6 20 30
|
w3a |
⊢ ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) |
| 32 |
31 2
|
wex |
⊢ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) |
| 33 |
32 1
|
cab |
⊢ { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) } |
| 34 |
0 33
|
wceq |
⊢ GrpOp = { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) } |