Metamath Proof Explorer


Definition df-ioc

Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006)

Ref Expression
Assertion df-ioc (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧𝑦 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cioc (,]
1 vx 𝑥
2 cxr *
3 vy 𝑦
4 vz 𝑧
5 1 cv 𝑥
6 clt <
7 4 cv 𝑧
8 5 7 6 wbr 𝑥 < 𝑧
9 cle
10 3 cv 𝑦
11 7 10 9 wbr 𝑧𝑦
12 8 11 wa ( 𝑥 < 𝑧𝑧𝑦 )
13 12 4 2 crab { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧𝑦 ) }
14 1 3 2 2 13 cmpo ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧𝑦 ) } )
15 0 14 wceq (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧𝑦 ) } )