Metamath Proof Explorer


Definition df-ioc

Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006)

Ref Expression
Assertion df-ioc
|- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cioc
 |-  (,]
1 vx
 |-  x
2 cxr
 |-  RR*
3 vy
 |-  y
4 vz
 |-  z
5 1 cv
 |-  x
6 clt
 |-  <
7 4 cv
 |-  z
8 5 7 6 wbr
 |-  x < z
9 cle
 |-  <_
10 3 cv
 |-  y
11 7 10 9 wbr
 |-  z <_ y
12 8 11 wa
 |-  ( x < z /\ z <_ y )
13 12 4 2 crab
 |-  { z e. RR* | ( x < z /\ z <_ y ) }
14 1 3 2 2 13 cmpo
 |-  ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } )
15 0 14 wceq
 |-  (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } )