| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clgs | ⊢  /L | 
						
							| 1 |  | va | ⊢ 𝑎 | 
						
							| 2 |  | cz | ⊢ ℤ | 
						
							| 3 |  | vn | ⊢ 𝑛 | 
						
							| 4 | 3 | cv | ⊢ 𝑛 | 
						
							| 5 |  | cc0 | ⊢ 0 | 
						
							| 6 | 4 5 | wceq | ⊢ 𝑛  =  0 | 
						
							| 7 | 1 | cv | ⊢ 𝑎 | 
						
							| 8 |  | cexp | ⊢ ↑ | 
						
							| 9 |  | c2 | ⊢ 2 | 
						
							| 10 | 7 9 8 | co | ⊢ ( 𝑎 ↑ 2 ) | 
						
							| 11 |  | c1 | ⊢ 1 | 
						
							| 12 | 10 11 | wceq | ⊢ ( 𝑎 ↑ 2 )  =  1 | 
						
							| 13 | 12 11 5 | cif | ⊢ if ( ( 𝑎 ↑ 2 )  =  1 ,  1 ,  0 ) | 
						
							| 14 |  | clt | ⊢  < | 
						
							| 15 | 4 5 14 | wbr | ⊢ 𝑛  <  0 | 
						
							| 16 | 7 5 14 | wbr | ⊢ 𝑎  <  0 | 
						
							| 17 | 15 16 | wa | ⊢ ( 𝑛  <  0  ∧  𝑎  <  0 ) | 
						
							| 18 | 11 | cneg | ⊢ - 1 | 
						
							| 19 | 17 18 11 | cif | ⊢ if ( ( 𝑛  <  0  ∧  𝑎  <  0 ) ,  - 1 ,  1 ) | 
						
							| 20 |  | cmul | ⊢  · | 
						
							| 21 |  | vm | ⊢ 𝑚 | 
						
							| 22 |  | cn | ⊢ ℕ | 
						
							| 23 | 21 | cv | ⊢ 𝑚 | 
						
							| 24 |  | cprime | ⊢ ℙ | 
						
							| 25 | 23 24 | wcel | ⊢ 𝑚  ∈  ℙ | 
						
							| 26 | 23 9 | wceq | ⊢ 𝑚  =  2 | 
						
							| 27 |  | cdvds | ⊢  ∥ | 
						
							| 28 | 9 7 27 | wbr | ⊢ 2  ∥  𝑎 | 
						
							| 29 |  | cmo | ⊢  mod | 
						
							| 30 |  | c8 | ⊢ 8 | 
						
							| 31 | 7 30 29 | co | ⊢ ( 𝑎  mod  8 ) | 
						
							| 32 |  | c7 | ⊢ 7 | 
						
							| 33 | 11 32 | cpr | ⊢ { 1 ,  7 } | 
						
							| 34 | 31 33 | wcel | ⊢ ( 𝑎  mod  8 )  ∈  { 1 ,  7 } | 
						
							| 35 | 34 11 18 | cif | ⊢ if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) | 
						
							| 36 | 28 5 35 | cif | ⊢ if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) | 
						
							| 37 |  | cmin | ⊢  − | 
						
							| 38 | 23 11 37 | co | ⊢ ( 𝑚  −  1 ) | 
						
							| 39 |  | cdiv | ⊢  / | 
						
							| 40 | 38 9 39 | co | ⊢ ( ( 𝑚  −  1 )  /  2 ) | 
						
							| 41 | 7 40 8 | co | ⊢ ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) ) | 
						
							| 42 |  | caddc | ⊢  + | 
						
							| 43 | 41 11 42 | co | ⊢ ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 ) | 
						
							| 44 | 43 23 29 | co | ⊢ ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 ) | 
						
							| 45 | 44 11 37 | co | ⊢ ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) | 
						
							| 46 | 26 36 45 | cif | ⊢ if ( 𝑚  =  2 ,  if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) ) | 
						
							| 47 |  | cpc | ⊢  pCnt | 
						
							| 48 | 23 4 47 | co | ⊢ ( 𝑚  pCnt  𝑛 ) | 
						
							| 49 | 46 48 8 | co | ⊢ ( if ( 𝑚  =  2 ,  if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) ) ↑ ( 𝑚  pCnt  𝑛 ) ) | 
						
							| 50 | 25 49 11 | cif | ⊢ if ( 𝑚  ∈  ℙ ,  ( if ( 𝑚  =  2 ,  if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) ) ↑ ( 𝑚  pCnt  𝑛 ) ) ,  1 ) | 
						
							| 51 | 21 22 50 | cmpt | ⊢ ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( if ( 𝑚  =  2 ,  if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) ) ↑ ( 𝑚  pCnt  𝑛 ) ) ,  1 ) ) | 
						
							| 52 | 20 51 11 | cseq | ⊢ seq 1 (  ·  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( if ( 𝑚  =  2 ,  if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) ) ↑ ( 𝑚  pCnt  𝑛 ) ) ,  1 ) ) ) | 
						
							| 53 |  | cabs | ⊢ abs | 
						
							| 54 | 4 53 | cfv | ⊢ ( abs ‘ 𝑛 ) | 
						
							| 55 | 54 52 | cfv | ⊢ ( seq 1 (  ·  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( if ( 𝑚  =  2 ,  if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) ) ↑ ( 𝑚  pCnt  𝑛 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑛 ) ) | 
						
							| 56 | 19 55 20 | co | ⊢ ( if ( ( 𝑛  <  0  ∧  𝑎  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( if ( 𝑚  =  2 ,  if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) ) ↑ ( 𝑚  pCnt  𝑛 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑛 ) ) ) | 
						
							| 57 | 6 13 56 | cif | ⊢ if ( 𝑛  =  0 ,  if ( ( 𝑎 ↑ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( 𝑛  <  0  ∧  𝑎  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( if ( 𝑚  =  2 ,  if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) ) ↑ ( 𝑚  pCnt  𝑛 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑛 ) ) ) ) | 
						
							| 58 | 1 3 2 2 57 | cmpo | ⊢ ( 𝑎  ∈  ℤ ,  𝑛  ∈  ℤ  ↦  if ( 𝑛  =  0 ,  if ( ( 𝑎 ↑ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( 𝑛  <  0  ∧  𝑎  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( if ( 𝑚  =  2 ,  if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) ) ↑ ( 𝑚  pCnt  𝑛 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑛 ) ) ) ) ) | 
						
							| 59 | 0 58 | wceq | ⊢  /L   =  ( 𝑎  ∈  ℤ ,  𝑛  ∈  ℤ  ↦  if ( 𝑛  =  0 ,  if ( ( 𝑎 ↑ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( 𝑛  <  0  ∧  𝑎  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑚  ∈  ℕ  ↦  if ( 𝑚  ∈  ℙ ,  ( if ( 𝑚  =  2 ,  if ( 2  ∥  𝑎 ,  0 ,  if ( ( 𝑎  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝑎 ↑ ( ( 𝑚  −  1 )  /  2 ) )  +  1 )  mod  𝑚 )  −  1 ) ) ↑ ( 𝑚  pCnt  𝑛 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑛 ) ) ) ) ) |