| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clgs |  |-  /L | 
						
							| 1 |  | va |  |-  a | 
						
							| 2 |  | cz |  |-  ZZ | 
						
							| 3 |  | vn |  |-  n | 
						
							| 4 | 3 | cv |  |-  n | 
						
							| 5 |  | cc0 |  |-  0 | 
						
							| 6 | 4 5 | wceq |  |-  n = 0 | 
						
							| 7 | 1 | cv |  |-  a | 
						
							| 8 |  | cexp |  |-  ^ | 
						
							| 9 |  | c2 |  |-  2 | 
						
							| 10 | 7 9 8 | co |  |-  ( a ^ 2 ) | 
						
							| 11 |  | c1 |  |-  1 | 
						
							| 12 | 10 11 | wceq |  |-  ( a ^ 2 ) = 1 | 
						
							| 13 | 12 11 5 | cif |  |-  if ( ( a ^ 2 ) = 1 , 1 , 0 ) | 
						
							| 14 |  | clt |  |-  < | 
						
							| 15 | 4 5 14 | wbr |  |-  n < 0 | 
						
							| 16 | 7 5 14 | wbr |  |-  a < 0 | 
						
							| 17 | 15 16 | wa |  |-  ( n < 0 /\ a < 0 ) | 
						
							| 18 | 11 | cneg |  |-  -u 1 | 
						
							| 19 | 17 18 11 | cif |  |-  if ( ( n < 0 /\ a < 0 ) , -u 1 , 1 ) | 
						
							| 20 |  | cmul |  |-  x. | 
						
							| 21 |  | vm |  |-  m | 
						
							| 22 |  | cn |  |-  NN | 
						
							| 23 | 21 | cv |  |-  m | 
						
							| 24 |  | cprime |  |-  Prime | 
						
							| 25 | 23 24 | wcel |  |-  m e. Prime | 
						
							| 26 | 23 9 | wceq |  |-  m = 2 | 
						
							| 27 |  | cdvds |  |-  || | 
						
							| 28 | 9 7 27 | wbr |  |-  2 || a | 
						
							| 29 |  | cmo |  |-  mod | 
						
							| 30 |  | c8 |  |-  8 | 
						
							| 31 | 7 30 29 | co |  |-  ( a mod 8 ) | 
						
							| 32 |  | c7 |  |-  7 | 
						
							| 33 | 11 32 | cpr |  |-  { 1 , 7 } | 
						
							| 34 | 31 33 | wcel |  |-  ( a mod 8 ) e. { 1 , 7 } | 
						
							| 35 | 34 11 18 | cif |  |-  if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) | 
						
							| 36 | 28 5 35 | cif |  |-  if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) | 
						
							| 37 |  | cmin |  |-  - | 
						
							| 38 | 23 11 37 | co |  |-  ( m - 1 ) | 
						
							| 39 |  | cdiv |  |-  / | 
						
							| 40 | 38 9 39 | co |  |-  ( ( m - 1 ) / 2 ) | 
						
							| 41 | 7 40 8 | co |  |-  ( a ^ ( ( m - 1 ) / 2 ) ) | 
						
							| 42 |  | caddc |  |-  + | 
						
							| 43 | 41 11 42 | co |  |-  ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) | 
						
							| 44 | 43 23 29 | co |  |-  ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) | 
						
							| 45 | 44 11 37 | co |  |-  ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) | 
						
							| 46 | 26 36 45 | cif |  |-  if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) | 
						
							| 47 |  | cpc |  |-  pCnt | 
						
							| 48 | 23 4 47 | co |  |-  ( m pCnt n ) | 
						
							| 49 | 46 48 8 | co |  |-  ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) | 
						
							| 50 | 25 49 11 | cif |  |-  if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) | 
						
							| 51 | 21 22 50 | cmpt |  |-  ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) | 
						
							| 52 | 20 51 11 | cseq |  |-  seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) | 
						
							| 53 |  | cabs |  |-  abs | 
						
							| 54 | 4 53 | cfv |  |-  ( abs ` n ) | 
						
							| 55 | 54 52 | cfv |  |-  ( seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) ` ( abs ` n ) ) | 
						
							| 56 | 19 55 20 | co |  |-  ( if ( ( n < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) ` ( abs ` n ) ) ) | 
						
							| 57 | 6 13 56 | cif |  |-  if ( n = 0 , if ( ( a ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( n < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) ` ( abs ` n ) ) ) ) | 
						
							| 58 | 1 3 2 2 57 | cmpo |  |-  ( a e. ZZ , n e. ZZ |-> if ( n = 0 , if ( ( a ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( n < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) ` ( abs ` n ) ) ) ) ) | 
						
							| 59 | 0 58 | wceq |  |-  /L = ( a e. ZZ , n e. ZZ |-> if ( n = 0 , if ( ( a ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( n < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) ) ` ( abs ` n ) ) ) ) ) |